
Communicating Process Architectures – 2009
Eds. P.H. Welch et al (Eds.)
IOS Press, 2009

1

Resumable Java Bytecode - Process Mobility for
the JVM

Jan Bækgaard Pedersen (matt@cs.unlv.edu) and
Brian Kauke (kaukeb@gmail.com)

School of Computer Science, University of Nevada, Las Vegas, Nevada, United States

Abstract. This paper describes an implementation of resumable and mobile processes
for a new process-oriented language called ProcessJ. ProcessJ is based on CSP and
the π-calculus; it is structurally very close to occam-π, but the syntax is much closer
to the imperative part of Java (with new constructs added for process orientation).
One of the targets of ProcessJ is Java bytecode to be executed on the Java Virtual
Machine (JVM), and in this paper we describe how to implement the process mobility
features of ProcessJ with respect to the Java Virtual Machine. We show how to add
functionality to support resumability (and process mobility) by a combination of code
rewriting (adding extra code to the generated Java target code), as well as bytecode
rewriting.

Introduction

In this paper we present a technique to achieve process resumability and mobility for ProcessJ
processes executed in one or more Java Virtual Machines.

ProcessJ is a new process-oriented language with syntax close to Java and a semantics
close to occam-π [19]. In the next subsection we briefly introduce ProcessJ.

We have developed a code generator (from ProcessJ to Java) and a rewriting technique of
the Java bytecode (which is the result of compiling the Java code generated by the ProcessJ
compiler) to alter the generated Java bytecode to save and restore state as well as support for
resuming execution in the middle of a code segment.

This capability we call transparent mobility [15], which differs from non-transparent mo-
bility in that the programmer does not need be concerned about preserving the state of the
system at any particular suspend or resume point. We do not, however, mean that processes
may be implicitly suspended at arbitrary points in their execution.

ProcessJ

ProcessJ is a new process-oriented language. It is based on CSP [8] and the π-calculus [10].
Structurally it is very much like occam-π; it is imperative with support for synchronous
communication through typed channels. Like occam-π, it supports mobility of processes.
Syntactically it is very close to Java (but without objects), and with added constructs needed
for process orientation. ProcessJ currently targets the following execution platforms through
different code generators (it produces source code which is then compiled using a compiler
for the target language):

• Any platform that supports the KRoC [20, 22] occam-π compiler. ProcessJ is trans-
lated to occam-π, and then passed to the KRoC compiler.

2 Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode

• C and MPI [5]; making it possible to write process-oriented programs for a distributed
memory cluster or wide area network. ProcessJ is translated to C with MPI message
passing calls and passed to a C compiler.

• Java with JCSP [16, 18], which will run on any architecture supporting a JVM. ProcessJ
is translated to JCSP, which is Java with library-provided CSP support, and passed to
the Java compiler.

In this paper we focus on the process mobility of ProcessJ for Java/JCSP. As the JVM
itself provides no support for continuations and the Java language provides a restricted set of
flow control constructs on which to build such functionality, it was initially not clear whether
transparent process mobility could be usefully implemented on this platform.

Like any other process oriented language, ProcessJ has the notion of processes (proce-
dures executing in their own executing context), but since the translation is to Java, it is
sometimes necessary to refer to methods when describing the generated Java code and Java
bytecode. A simple example of a piece of ProcessJ code (without mobility) is a multiplexer
that accepts input on two input channels (in1 and in2) and outputs on an output channel
(out):

proc void mux(chan<int>.read in1,
chan<int>.read in2,
chan<int>.write out) {

int data;
while (true) {

alt {
data = in1.read() :

out.write(data);
data = in2.read() :

out.write(data);
}

}
}

where chan<int>.read in1 declares c1 to be the reading end of a channel that carries
integers, out.write(data) writes the value of data to the out channel, and alt rep-
resents an “alternation” between the two input guards guarding two channel write statements.

Other approaches such as [2, 15] consider thread migration (which involves general object
migration) in the Java language, but since ProcessJ is not object oriented, we do not need to be
concerned with object migration at the programmer level. We do use an encapsulation object
at the translation level from ProcessJ to Java to hold the data that is transferred (this object
serves as a continuation for the translated ProcessJ process). In addition, mobile processes,
like in occam-π, are started, and resumed, by simply calling it as a regular procedure (which
translates into invoking it as a regular non-static method in the resulting Java code). In this
way, we can interpret the suspended mobile as a continuation [7] represented by the object
which holds the code, the saved state, and information about where to continue the code
execution upon resumption.

1 Resumability

We start by defining the term resumability. We denote a procedure as resumable if it can be
temporarily terminated by a programmer-inserted suspend statement and control returned
to the caller, and at some later time restarted at the instruction immediately following the
suspend point and with the exact same local state, possibly in a different JVM located on
a different machine (i.e., all local variables contain the same values as they did when the

Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode 3

method was terminated). In a process oriented language, the only option a process has for
communicating with its environment, that is, other processes, is though channel communi-
cation, which means that when the process is resumed, it might be with a different set of
(channel, channel end, or barrier) parameters; in other situations a process might take certain
parameters for initialization purposes [21], which must be provided ’dummy values’ upon
subsequent resumptions. Therefore, in this paper we consider resumability for procedures
where the values of the local variables are saved and restored when the process is resumed,
but where each process resumption can happen with a new set of actual parameters. This
allows the environment to interact with the process. We start with a formal definition of
resumability.

1.1 Formal Definition of Resumability

In this section we briefly define resumability for JVM bytecode in a more formal way (we
disregard objects and fields as neither are used in ProcessJ.)

Each invocation of a bytecode method has its own evaluation stack; recall, the JVM is a
stack based architecture, and all arithmetic takes place on the evaluation stack, which we can
model as an array s of values:

s = [e0, e1, . . . , ei]

In addition to an evaluation stack, each invocation has its own activation record (AR) (we
consider non-static methods, but static methods are handled in a similar manner; the only
difference is that a reference to this is stored at address 0 in the activation record for non-
static method invocations). We can also represent a saved activation record as an array:

A = [this, p1, . . . , pn, v1, . . . , vm],

where this is a reference to the current object, pi are parameters, and vi are local variables.
(p1 = A[1], . . . , pn = A[n], v1 = A[n + 1], . . . , vm = A[n + m]), where A[i] denotes the
value of the parameter/local variable stored at address i. We do not need to store this in the
saved activation record as it is automatically replaced at address 0 of the activation record
for every invocation of a method, but we include it here as there are instructions that refer
to address 0, where this is always stored for non-static methods. It is worth mentioning that
the encapsulating object used in the ProcessJ to Java translation uses non-static methods and
fields; this is necessary since a ProcessJ program might have more mobile processes based
on the same procedure.

We can now define the semantic meaning of executing a basic block of bytecode instruc-
tions by considering the effect it has on the stack and the activation record. Only the last
instruction of such a block can be a jump, so we are working with a block of code that will be
executed completely. At this point, it is worth mentioning that at the end of a method invo-
cation the stack is always empty; in addition, a ProcessJ suspend statements will translate
to a return instructions, and at these return (suspend) points, the evaluation stack will also
be empty. We consider a semantic function, call it, EJV M [[B]](s,A) where B = i0 i1 . . . ik
is a basic block of bytecode statements and define:
EJV M [[i0 i1 . . . ik]](s,A) = EJV M [[i1 . . . ik]](s′,A′), where

(s′,A′) = EJV M [[i0]](s,A)
We shall not give the full semantic specification for the entire instruction set for the Java
Virtual Machine as it would take up too much space in this paper, but most of the instructions
are straightforward. A few examples are (we assume non-static invocations here):

4 Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode

EJV M [[iload 1]]([. . .],A) = ([. . . , a1],A)
where A = [this, a1, . . . , an+m]

EJV M [[istore 1]]([. . . , ek−1, ek],A) = ([. . . , ek−1], [this, ek, a2, . . . , an+m])
where A = [a0, a1, . . . , an+m]

EJV M [[goto X]]([. . .],A) = EJV M [[B′]]([. . .],A)
where B′ is the basic block
that starts at address X.

EJV M [[ifeq X]]([e0, e1, . . . , ek],A) = EJV M [[B′]]([e0, e1, . . . , ek],A),
if ek = 0 where B′ is the basic block
that starts at address X.

EJV M [[ifeq X]]([e0, e1, . . . , ek],A) = EJV M [[B′]]([e0, e1, . . . , ek],A),
if ek != 0 where B′ is the basic block
that immediately follows ifeq X.

EJV M [[invokevirtual f]]([. . . , q1, . . . , qj],A) = ([. . . , r],A)
where r is the return value of
EJV M [[Bf]]([],A′)
and A′ = (q0, q1, . . . , qj,⊥, . . . ,⊥),
q0 is an object reference, and
f(q1, . . . , qj) is the actual
invocation. Bj is the code for a
non-void method f .

where ⊥ represents the undefined value. This is more of a semantic trick than reality as
no activation record entries are ever left undefined at the actual use of the value (the Java
compiler assures this), but here we simply wish to denote that the values of the locals might
not have been assigned a value by the user code at this moment.

Now let B = i0 i1 . . . ij−1 ij ij+1 . . . ik be a basic block of instructions (from the
control flow graph associated with the code we are executing), and let ij represent a imaginary
suspend instruction (as mentioned, eventually it becomes a return):

EJV M [[B]]([],A) = EJV M [[ij+1 . . . ik]](s′,A′) where (1)
(s′,A′) = EJV M [[i0 i1 . . . ij−1]]([],A)

or equivalently:

EJV M [[i0 i1 . . . ij−1 ij ij+1 . . . , ik]](s,A) = EJV M [[i0 i1 . . . ij−1 ij+1 . . . ik]](s,A);

simply ignore the suspend instruction ij . Naturally, if the code is evaluated in two
stages as in the first semantic definition, the invoking code must look something like this
(assuming B is the body of a method foo()):

.

.
foo(..); // Execute i0 . . . ij−1

foo(..); // Execute ij+1 . . . ik
.
.

We call this form of resumability “resumability without parameter change” since (1) uses A′

and not an A′′ where A′′ has the same local variables but different parameter values (i.e, the
parameters passed to foo are exactly the same for both calls). Resumability without param-
eter changes is not particularly interesting from a mobility standpoint in a process-oriented
language; typically we wish to be able to supply different parameters (most often channels,

Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode 5

channel ends, and barriers) to the process when it is resumed (especially because the parame-
ters could be channel ends which allow the process to interact with a new environment, that is,
the process receiving the mobile). It turns out that if we can implement resumability without
parameter change in the JVM (i.e., devise a method of restoring activation records between
invocations), then the more useful type of resumability with parameter change comes totally
free of charge! For completeness, let us define this as well:

Let us consider again the basic block code B = i0 i1 . . . ij−1 ij ij+1 . . . ik, where again
ij represents a suspend instruction that returns control to the caller, and let us assume that
the code in B is invoked by the calls foo(v1, . . . , vn), and foo(v′1, . . . , v

′
n) respectively.

EJV M [[i0 . . . ij−1 ij ij+1 . . . ik]](s,A) = EJV M [[ij+1 . . . ik]](s′′,A′′) where
A = [a0 = this, a1 = v1, a2 = v2, . . . , an = vn, an+1 = ⊥, . . . , an+m = ⊥]
A′′ = [a0 = this, a′′1 = v′1, a

′′
2 = v′2, . . . , a

′′
n = v′n, a

′′
n+1 = a′n+1, . . . , a

′′
n+m = a′n+m]

(s′,A′) = EJV M [[i0 i1 . . . ij1]](s,A)
A′ = [a′0, . . . , a

′
n+m]

We call this “resumability with parameter changes”. The above extends to loops (through
multiple basic block code segments), and to code blocks with more than one suspend
instruction. As we can see from the semantic function EJV M , the activation record must
’survive’ between invocations/suspend-resumptions; local variables are saved and restored,
parameters are not stored and are changed according to each invocation’s actual parameters.
Naturally we must assure that the locations in the activation record holding the locals are
restored before they are referenced again.

2 Target Bytecode Structure

All the extra code needed to save and restore state upon suspension and resumption can be
generated by the ProcessJ code generator; only the code associated with resuming execution
in the middle of a code block will require bytecode rewriting.

Let us consider a very simple example with a single suspend statement (the following
is a snippet of legal ProcessJ code):

type proc mobileFooType();
mobile proc void foo() implements mobileFooType {

int a;
a = 0;
while (a == 0) {

a = a + 1;
suspend;
a = a - 1;

}
}

The resulting bytecode (starting on the next page) would look something like this:

6 Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode

public void foo();
Code:
0: iconst_0
1: istore_1 ; a = 0;
2: iload_1
3: ifne 20 ; while (a == 0) {
6: iload_1
7: iconst_1
8: iadd
9: istore_1 ; a = a + 1;
10: ??? ; suspend handled here
13: iload_1
14: iconst_1
15: isub
16: istore_1 ; a = a - 1;
17: goto 2 ; }
20: return

}

Since the suspend is handled in line 10 by inserting a return instruction, we need to store
the local state before the return, and upon resuming the execution, control must be transferred
to line 13 rather than starting at line 0 again, and the state must be restored before executing
line 13. This requires three new parts inserted into the bytecode:

1. Code to save the local state (in the above example the local variable a) before the
suspend statement in line 10.

2. Code to restore the local state before resuming execution of the instructions after the
previous suspend statement, that is, after line 1 and before line 13.

3. Code to transfer control to the right point of the code depending on which suspend
was most recently executed (before line 0).

Thus the goal is to automate the generation of such code. 1 and 2 can be done completely in
Java by the ProcessJ code generator, and 3 can be done by a combination of Java code and
bytecode rewriting.

Before turning to this, let us first mention a few restrictions that mobile processes have in
ProcessJ: Processes have no return type (the equivalent in Java is a void method), and mobile
processes cannot be recursive. The semantics for a recursive mobile process are not yet clear,
and we do not see any obvious need for recursion of mobiles at this time.

3 Source Code Rewriting

As mentioned, the ProcessJ code generator emits Java source code, which is then compiled
using the Java compiler, and the resulting bytecode is subsequently rewritten.

Let us describe the Java code emitted from the ProcessJ compiler first. To transform the
foo method from the previous section into a resumable process, we encapsulate it in a Java
Object that contains two auxiliary fields as well as the process rewritten as a Java method and
two dummy placeholder methods.

Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode 7

1. The method is encapsulated in a new class:

public class Foo {
private Object[] actRec;
private static void suspend() { }
private static void resume() { }
private int jumpTarget = 0;

public void foo() {
// switch statement that jumps to resume point.
int a;
a = 0;
while (a == 0) {

a = a + 1;
// code to save the current state.
suspend();
resume();
// code to restore the previous state.
a = a - 1;

}
}

}

where actRec represents a saved activation record. The suspend and resume
methods are just dummy methods that are added to satisfy the compiler (more about
these later). Finally, a field jumpTarget has been added. jumpTarget will hold
non-negative values (0 if the execution is to start from the beginning), and 1, 2, if
the execution is to resume from somewhere within the code (i.e., not from the start).

2. The code for foo must also be rewritten to support resumability:

• Support must be added for saving and restoring the local variable part of the JVM
activation record; this is done through the Object array actRec.

• A lookupswitch JVM instruction [9] must be added; based on the jump
Target field it will jump to the instruction following the last suspend exe-
cuted. A simple Java switch statement that switches on the jumpTarget will
translate to such a lookupswitch instruction.

3.1 Saving Local State

A Java activation record consists of two or three parts: Local variables, parameters and for
non-static methods, a reference to this stored at address 0 in the activation record. The layout
is illustrated in Figure 1. Recall, we need the encapsulated method to be non-static. Since
this never changes for an object, and since each resumption of the method provides a new
set of parameters, all we have to save is the set of locals. As we rely on the JVM invocation
instructions, each invocation of a method creates its own new JVM activation record that
contains this, the provided parameters, and room for the locals. The first step in resuming
the method is to restore the locals to the state they were in when the method was suspended.
We use an array of Objects to store the m locals. If the field jumpTarget has value 0,
representing that the method starts from the top (this is the initial invocation of the process),
no restoration of locals is necessary as the execution starts from the beginning of the code
(and the ProcessJ and Java compilers have assured that no path to a use of an uninitialized
variable exists). On subsequent resumptions, the saved array of locals must be restored,

8 Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode

!"#"$

%
&&& '()"*+

%
&&& &&&!"#"$

,

'()"*

$

!"#"$

%
&&& '()"*+

%
&&& &&&-./0

++

!"#"$

,

'()"*

$

1)-/2"-/(,+#3)(#4+5(#+"+,(,!0-"-/)+$3-.(4+6/-.+,+7"#"$3-3#0+",4+$+*()"*0&

&&&

8+++++++++++%+++++++++++9+++++++++++:+++++++++++;++++++++++++<+++++++++++=+++++++++++>++++++++++++?+++++++++++@++++++++++%8

1)-/2"-/(,+#3)(#4+5(#+"+0-"-/)+$3-.(4+6/-.+,+7"#"$3-3#0+",4+$+*()"*0&

&&&

8+++++++++++%+++++++++++9+++++++++++:+++++++++++;++++++++++++<+++++++++++=+++++++++++>++++++++++++?+++++++++++@

Figure 1: JVM Activation Records.

and the value of the field jumpTarget determines from where execution should continue
(immediately after the return instruction that suspended the previous activation of the
method).

If for example a method has locals a, b, and c of integer type, we can save an Object
array with their values in the following way by using the auto-boxing feature provided by the
Java compiler:

actRec = new Object[] { a, b, c};
jumpTarget = ...;

and they can be restored in the following manner:

a = (Integer)actRec[0];
b = (Integer)actRec[1];
c = (Integer)actRec[2];

Both of these code blocks are generated by the ProcessJ code generator, the former before
the suspend and the latter after.

3.2 Resuming Execution

When a method is resumed (by being invoked), the jumpTarget field determines where in
the code execution should continue; namely immediately after the return that suspended
the previous invocation. We cannot add Java code that gets translated by the Java compiler
for this; in order to do so we would need a goto instruction (as well as support for labels), and
although goto is a reserved word in Java, it is not currently in use. To achieve this objective,
we must turn to bytecode rewriting.

We need to insert a lookupswitch instruction that switches on the jumpTarget
field, and jumps to the address of the instruction following the return that suspended the
previous invocation. We can generate parts of the code with help from the Java compiler; we
insert code like this at the very beginning of the generated Java code:

switch (jumpTarget) {
case 1: break;
default: break;

}

There will be as many cases as there are suspends in the ProcessJ code. We get bytecode
like this:

4: lookupswitch{
1: 24;
default: 27 }

24: goto 27
27: ...

Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode 9

In the rewriting of the bytecode all we have to do is replace the absolute addresses (24 and 27)
in the switch by the addresses of the resume points. The addresses of the resume points can
be found by keeping track of the values assigned to the jumpTarget field in the generated
Java code or by inspecting the bytecode as explained below.

Since we replaced the suspend keyword by calls to the dummy suspend() and
resume() method, we can look for the static invocation of resume():

52: aload_0
53: iconst_1
54: putfield #5; //Field jumpTarget:I
57: invokestatic #18; //Method suspend:()V
60: invokestatic #19; //Method resume:()V
63: ...

(here found in line 60), and the two instructions immediately before the suspend call will
reveal the jumpTarget value that the address (60) should be associated with. The in-
struction in line 53 will be one of the iconst X (X=1,2,3,4,5) instructions or a bipush
instruction. For the above, the lookupswitch should be rewritten as:

4: lookupswitch{
1: 60;
default: 27 }

24: goto 27
27: ...

Furthermore the lines 57 and 60 must be rewritten to be a return (this cannot be done
before compile time, as the Java compiler will complain about unreachable code) and a nop
respectively. Alternatively, the resume method can be removed and the jump target will be
the instruction following the suspend call.

4 Example

Let us rewrite the previous example to obtain this new Foo class:
public class Foo {

private Object[] actRec;
private static void suspend() { }
private static void resume() { }
private int jumpTarget = 0;
public void foo() {

int a;
switch (jumpTarget) { // Begin: jump

case 1: break;
default: break;

} // End: jump

a = 0;
while (a == 0) {

a = a + 1;
actRec = new Object[] { a }; // Begin: save state
jumpTarget = 1; // End: save state
suspend();
resume();
a = (Integer)actRec[0]; // restore state

a = a - 1;
}
jumpTarget = 0; // Reset jumpTarget

}
}

10 Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode

Note, the jumpTarget should be set to 0 before each original return statement to
assure that the next time the process is resumed, it will start from the beginning.

This is very close to representing the code we really want, and best of all, it actually
compiles.

It is worth noting that the line that saves the local state must include all locals in scope.
If the rewriting is done solely in bytecode, this would require an analysis of the control flow
graph (CFG) associated with the code (not unlike the approach taken in the Southampton
Portable Occam Compiler (Spoc)), but since we generate the store code as part of the code
generation from the ProcessJ compiler, we have access to all scope information. It is further
simplified by the fact that the scoping rules for ProcessJ follows those of Java (when removing
fields and objects).

As the generated code looks now, every invocation of foo will always execute the a =
0 statement, that is, start from the beginning. Naturally, this is because of the incomplete
switch statement. Let us look at the generated bytecode

public void foo();
Code:
0: aload_0
1: getfield jumpTarget I // switch (jumpTarget) {
4: lookupswitch{

1: 24; // case 1: ...
default: 27 } // default: ...

24: goto 27 // }
27: iconst_0
28: istore_1 // a = 0;
29: iload_1 // while (a == 0) {
30: ifne 83
33: iload_1
34: iconst_1
35: iadd
36: istore_1
37: aload_0 // a = a + 1;
38: iconst_1
39: anewarray java/lang/Object
42: dup
43: iconst_0
44: iload_1
45: invokestatic java/lang/Integer.

valueOf(I)Ljava/lang/Integer;
48: aastore
49: putfield actRec [Ljava/lang/Object;

// actRec = new Object[]{a};
52: aload_0
53: iconst_1
54: putfield jumpTarget I // jumpTarget = 1;
57: invokestatic suspend()V // suspend;
60: invokestatic resume()V // // resume point
63: aload_0
64: getfield actRec [Ljava/lang/Object;
67: iconst_0
68: aaload
69: checkcast java/lang/Integer
72: invokevirtual java/lang/Integer.intValue()I
75: istore_1 // a = (Integer)actRec[0];
76: iload_1
77: iconst_1
78: isub
79: istore_1 // a = a - 1;

Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode 11

80: goto 29 // }
83: aload_0
84: iconst_1
85: putfield jumpTarget I // jumpTarget = 0;
88: return

}

Lines 0–24 represent the switch statement, 38–54 the save state code, 57–60 the suspend/
resume place holder method calls, 63–75 the restore state code, and 83–88 the rewritten
original return code.

As pointed out above, this code is not correct; a number of things must be changed:

• Line 4 is the jump table that must be filled in with the correct addresses. If the field
jumpTarget is equal to 1 then the execution should continue at the invocation of the
dummy resume() method, that is, at line 60. The default label is already correct and
can be left unchanged.

• Line 57, the dummy suspend() invocation, should be replaced by a return in-
struction (we could not simply place a Java return instruction in the source code be-
cause the compiler would complain about the code following the return statement being
unreachable.)

• Line 60, the dummy resume() invocation should be replaced by a nop. This only
serves as a placeholder; theoretically we could have used address 63 in the
lookupswitch.

An example of the use in ProcessJ could be this:

proc void sender(chan<mobileFooType>.write ch) {
// create mobile
mobileFooType mobileFoo = new mobile foo;
// invoke foo (1st invocation)
mobileFoo();
// send to different process
ch.write(mobileFoo);

}

proc void receiver(chan<mobileFooType>.read ch) {
mobileFooType mobileFoo;
// receive mobileFooType process
mobileFoo = ch.read();
// invoke foo (2nd invocation)
mobileFoo();

}

proc void main() {
chan<MobileFooType> ch;
// in parallel execute
par {

sender(ch.write); // sender and
receiver(ch.read); // receiver

}
}

12 Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode

The resulting Java/JCSP code looks like this:

import org.jcsp.lang.*;

public class PJtest {
public static void sender(ChannelOutput ch_write) {

Foo mobileFoo = new Foo();
mobileFoo.foo();
ch_write.write(mobileFoo);

}

public static void receiver(ChannelInput ch_read) {
Foo mobileFoo;
mobileFoo = (Foo)ch_read.read();
mobileFoo.foo();

}

public static void main(String args[]) {
final One2OneChannel ch = Channel.one2one();

new Parallel(new CSProcess[] {
new CSProcess() {

public void run() {
sender(ch.out());

}},
new CSProcess() {

public void run() {
receiver(ch.in());

}}
}).run();

}
}

One small change is still needed to support mobility across a network. Since the generated
Java code is a class, this can be made serializable by making the generated classes implement
the Serializable interface. An object of such a class can now be serialized and sent
across a network. Welch et al. [17] provide such a mechanism in their jcsp.net package
as well.

Since the rewriting described encapsulates the mobile process in a new class, objects of
that class can be sent as data across the network and the mobile process inside that object can
be resumed by invoking the method that encapsulates the mobile process (mobileFoo.foo()
above).

5 Related Work and Other Approaches

Approaches to process mobility can be categorized as either transparent or non-transparent,
sometimes termed strong and weak migration (mobility), respectively [2, 6]. With non-
transparent mobility the programmer must explicitly provide the logic to suspend and resume
the mobile process whenever necessary. Existing systems such as jcsp.mobile [3, 4]
already provide this functionality. Transparent mobility significantly eases the task of the
programmer, but requires support from the run-time system which does not exist within the
Java Virtual Machine.

Some early approaches to supporting resumable programs in Java involved modification
of the JVM itself [2]. In our view, however, one of the most important advantages of targeting
the JVM is portability across the large installed base of Java runtime environments. Therefore
any approach that extends the JVM directly is of limited utility.

Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode 13

Some success has been demonstrated using automated transformation of Java source
code [6]. Due to the lack of support within the language for labeled gotos, this approach
suffers from a proliferation of conditional guards and a corresponding increase in code size.

Bytecode-only transformations methods targeting general thread resumability in Java are
explored in [1] and [15]. These approaches require control flow analysis of the bytecode in
order to generate code for the suspend point. Alternatively, the Kilim [14] actor-based frame-
work uses a CPS bytecode transformation to support cooperatively scheduled lightweight
threads (fibers) within Java.

Another example of bytecode state capture can be found in Java implementation of the
object-oriented language Python (Jython [12]) in order to support generators, a limited form
of co-routines [11]. This is perhaps the most similar to our implementation, even though gen-
erator functions are somewhat different in concept and application from ProcessJ procedures.
We wish, however, to be able to utilize the existing Java compilers to produce optimized byte-
code with our back-end.

The process-oriented nature of ProcessJ allows us to adopt a simple hybrid approach that
combines Java source and bytecode methods.

6 Conclusion

In this paper we have shown that a compiler for a process-oriented language can provide
transparent mobility using the existing Java compiler tool chain with minimal modification.
We developed a simple way to generate Java source code and rewrite Java bytecode to support
resumability and ultimately process mobility for the ProcessJ language.

We described the Java source code generated by the ProcessJ compiler, and also demon-
strated how to rewrite the Java bytecode to save and restore local state in between resumptions
of code executions as well as how to assure that execution continues with the same local state
(but with possibly new parameter values) at the instruction following the previous suspension
point.

7 Future Work

A number of interesting issues remain to be addressed. For ProcessJ, where we have chan-
nels, an interesting problem arise when assigning a parameter of channel end type to a local
variable. If a local variable holds a reference to a channel end, and the process is suspended
and sent to a different machine, the end of the channel now lives on a different physical ma-
chine. This is not a simple problem to solve; for occam-π the pony [13] system addresses
this problem. One way to approach this problem is to include a channel server, much like
the one found in JCSP.net [17] that keeps track of where channel ends are located; this
is the approach we are working with for the MPI/C code generator. Mobile channels can be
handled in the same way, but are outside the scope of this paper.

Other issues that need to be addressed include how resource management is to be handled;
if a mobile process contains references to e.g. open files that are not available on the JVM to
which the process is sent, accessing this file becomes impossible. We may wish to enforce
certain kinds of I/O restrictions on mobile processes in order to more clearly define their
behavior under mobility.

With a little effort, the saving and restoration could be gathered at the beginning and the
end of the method saving some code/instructions, but for clarity reasons we used a different
approach (as presented) in this paper.

14 Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode

8 Acknowledgments

This work was supported by the UNLV Presidents Research Award 2008/2009. We would
like to thank the reviewers who did a wonderful job in reviewing this paper. Their comments
and suggestions have been valuable in producing a much stronger paper.

References

[1] Sara Bouchenak. Techniques for Implementing Efficient Java Thread Serializa-
tion. In ACS/IEEE International Conference on Computer Systems and Applications
(AICCSA03), pages 14–18, 2003.

[2] Sara Bouchenak and Daniel Hagimont. Pickling Threads State in the Java System. In
Third European Research Seminar on Advances in Distributed Systems, 2000.

[3] Kevin Chalmers and John Kerridge. jcsp.mobile: A Package Enabling Mobile
Processes and Channels. In Jan Broenink and Herman Roebbers and Johan Sunter and
Peter Welch and and David Wood, editor, Communicating Process Architectures 2005,
pages 109–127, 2005.

[4] Kevin Chalmers, John Kerridge, and Imed Romdhani. Mobility in JCSP: New Mobile
Channel and Mobile Process Models. In Alistair McEwan and Steve Schneider and
Wilson Ifill and Peter Welch, editor, Communicating Process Architectures 2007, pages
163–182, 2007.

[5] Jack Dongarra. MPI: A Message Passing Interface Standard. The International Journal
of Supercomputers and High Performance Computing, 8:165–184, 1994.

[6] Stefan Fünfrocken. Transparent Migration of Java-based Mobile Agents - Capturing
and Reestablishing the State of Java Programs. In Mobile Agents, pages 26–37. Springer
Verlag, 1998.

[7] R. Hieb and R.K. Dybvig. Continuations and Concurrency. ACM Sigplan Notices,
25:128136, 1990.

[8] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8):666–677, August 1978.

[9] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification, 2nd Edition.
Prentice Hall PTR, 1999.

[10] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

[11] Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting coroutines. ACM Trans-
actions on Programming Languages and Systems, 31:1–31, 2009.

[12] Samuele Pedroni and Noel Rappin. Jython Essentials. O’Reilly Media, Inc., 2002.

[13] Mario Schweigler and Adam Sampson. pony - The occam-π Network Environment.
In Peter Welch, Jon Kerridge, and Fred Barnes, editors, Communicating Process Ar-
chitectures 2006, volume 64 of Concurrent Systems Engineering Series, pages 77–108,
Amsterdam, The Netherlands, September 2006. IOS Press.

Jan Bækgaard Pedersen and Brian Kauke / Resumable Java Bytecode 15

[14] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for java. In Procedings of
the European Conference on Object Oriented Programming (ECOOP), pages 104–128.
Springer, 2008.

[15] Eddy Truyen, Bert Robben, Bart Vanhaute, Tim Coninx, Wouter Joosen, and Pierre
Verbaeten. Portable Support for Transparent Thread Migration in Java. In ASA/MA,
pages 29–43. Springer Verlag, 2000.

[16] Peter H. Welch. Process Oriented Design for Java: Concurrency for All. In Hamid
R. Arabnia, editor, Proceedings of the International Conference on Parallel and Dis-
tributed Process Techniques and Applications, volume 1, pages 51–57, Las Vegas,
Nevada, USA, June 2000. CSREA, CSREA Press. ISBN: 1-892512-52-1.

[17] Peter H. Welch, Jo R. Aldous, and Jon Foster. CSP Networking for Java (JCSP.net).
Lecture Notes in Computer Science, 2330:695–708, 2002.

[18] Peter H. Welch and Paul D. Austin. Communicating Sequential Processes
for Java (JCSP) Home Page. Systems Research Group, University of Kent,
www.cs.kent.ac.uk/projects/ofa/jcsp.

[19] Peter H. Welch and Frederick R.M. Barnes. Communicating Mobile Processes: in-
troducing occam-π. In Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors,
25 Years of CSP, volume 3525 of Lecture Notes in Computer Science, pages 175–210.
Springer Verlag, April 2005.

[20] Peter H. Welch, Jim Moores, Frederick R. M. Barnes, and David C. Wood. The KRoC
Home Page. http://www.cs.kent.ac.uk/projects/ofa/kroc/.

[21] Peter H. Welch and Jan B. Pedersen. Santa Claus - with Mobile Reindeer and Elves. In
Proceedings of Communicating Process Architectures, 2008.

[22] Peter H. Welch and David C. Wood. The Kent Retargetable occam Compiler. In Brian
O’Neill, editor, Parallel Processing Developments, volume 47 of Concurrent Systems
Engineering, pages 143–166, Amsterdam, The Netherlands, March 1996. World oc-
cam and Transputer User Group, IOS Press.

