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Abstract. We propose ProcessJ as a new, more contemporary programming language
that supports process-oriented design, which raises the level of abstraction and low-
ers the barrier of entry for parallel and concurrent programming. ProcessJ promises
verifiability (e.g., deadlock detection), based on Hoare’s CSP model of concurrency,
and existing model checkers like FDR. Process-oriented means processes compose,
unlike thread-based or asynchronous message-passing models of concurrency; this
means that programmers can incrementally define larger and larger concurrent pro-
cesses without concern for undesirable nondeterminism or unexpected side effects.
Processes at their lowest, most granular level are sequential programs; there are no
global variables, so no race conditions, and the rules of parallel composition are func-
tional in nature, not imperative, and based on the mathematically sound CSP process
algebra. Collectively, these ideas raise the level of abstraction for concurrency; they
were successful once before with the occam language and the Transputer. We believe
their time has come again, and will not go away, in this new age of multi-core pro-
cessors. Computers have finally caught up with CSP and process-oriented design. We
believe that ProcessJ can be the programming language that provides a bridge from
today’s languages to tomorrow’s concurrent programs. Learning or teaching the pro-
gramming model and language will be greatly supported through the educational part
of the proposed project, which includes course templates and an online teaching tool
that integrates in-browser programming with teaching material. Our efforts are encour-
aged by the forthcoming 2013 IEEE and ACM curricula guidelines, which for the first
time include concurrent programming as a core knowledge area at the undergraduate
level.
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Introduction

Over the last decade, a new architecture model has been introduced to the world of com-
puting: multi-core processors. As speeds of conventional single-core processors plateaued, a
new approach had to be taken to continue the performance increase so desperately sought by
CPU manufacturers and users.

Today, it is not uncommon to find 32-core or even 64-core processors, and there is no
reason to believe that this trend will not continue. Although the idea of using multiple CPUs
to solve large problems is not new — message passing and shared memory architectures have
been around for a long time — the reality of multiple cores on a single socket (chip) sharing
resources is. Meanwhile, programming such architectures to make good use of the multiple
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cores available is difficult, time consuming, and error prone. On a quad-core processor, se-
quential code cannot use more than 25% of the processing power. If more is needed, there
has to be concurrently executable code, and lots of it. For there to be a chance of keeping the
cores busy with useful work, there needs to be an order of magnitude more concurrency in the
software than is available in the hardware: the principle of parallel slackness, first discussed
by Valiant [1].

Asynchronous message-passing programming (e.g., MPI Send/MPI Recv), which is
typically fairly coarse-grained parallelism, will not make optimal use of the computing re-
sources; multi-threaded programming, which requires locks on shared resources, is a com-
plicated and often dangerous game. Debugging such programs is, at best, hard; even worse,
because of possibly rare race conditions, programs that during testing seem fine, might dead-
lock or livelock if scheduled differently. In addition, trying formally to argue about or prove
properties of lock-based programs is rarely achievable.

Despite all these difficulties, concurrency is needed to make full use of computing re-
sources. We believe we have a better model that is more appropriate and much safer. This
programming model for multi-core processors does not require locks and semaphores, etc.;
it does not require the programmer to code explicitly for N cores; it reduces the number
of potential errors associated with the concurrent part of the program by means of a solid
foundation in mathematics as well as automatic verification and formal model checking; and
it is highly efficient and easily teachable. In this paper we propose a complete suite, from
programming language through online tools to IDEs that we believe could serve as a possible
way to reintroduce process-oriented programming to the general computing community in
the twenty-first century.

1. Existing Programming Models and Languages

Let us briefly point out some of the problems and issues we perceive to exist in current pro-
gramming models that could be used to program multi-core CPUs. We focus on the threads
and locks model, asynchronous message passing, and languages (besides occam [2,3] and
occam-π [4,5,6,7,8,9,10]) that are inspired by CSP [11,12,13,14], but have not broken into
the mainstream.

1.1. Thread and Lock Model

Shared memory initially seemed like a good idea: treat data as a shared resource between
concurrent threads of execution. This model provides a way for threads to communicate
with each other. However, this solution creates even greater problems: nondeterminism, race
conditions, and the need for mutual exclusion. Without shared memory, these problems don’t
exist.

Access to shared memory requires the use of locks, semaphores, and mutexes, etc. Such
synchronisation primitives are hard to master and get right; reasoning about a program with
just a few locks quickly becomes a complicated task, and even very capable programmers get
it wrong. For example, a solution to the Santa Claus problem, written in Java with locks [15],
was shown to be incorrect [16].

Programs written using the thread-and-lock model are error prone; even if the error does
not show up in tests, such programs are hard to reason about or even prove correct. Testing
is challenging enough for sequential (deterministic) programs, and its importance is well es-
tablished. There are even techniques for testing nondeterministic, randomised sequential pro-
grams, which include repetition and testing for a range of expected results. However, concur-
rency presents another layer of complexity due to runtime scheduling-based nondeterminism:
race conditions, or even deadlocks, can remain hidden throughout long, extensive periods of
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system testing, and not reveal themselves until unfavorable scheduling occurs after a system
is in production.

Although all cores on a multi-core CPU share the main memory, it is not necessary to use
shared memory primitives (explicitly) to program it. We argue that a model with synchronous
channel (point-to-point) communication with no shared data is a much safer alternative; ac-
tually, it is so safe that we can formally prove that our programs never deadlock or livelock,
and race conditions can never happen, ever!

1.2. Asynchronous Message Passing

Coarse-grained parallelism, as found in asynchronous message-passing programming, is not
entirely suitable for a multi-core architecture either. Often, such systems are developed with
a certain architecture size in question, frequently using a master/worker model as well as
the embarrassingly parallel programming paradigm. There is no inter-process communica-
tion, and changing the size of the number of processors causes load imbalance. Reasoning
about such things as buffer allocation is difficult or impossible [17,18]. In addition, the asyn-
chronous nature of a program execution makes reasoning about synchronisation — and ulti-
mately the concurrent behavior of the whole system — extremely complicated, if at all pos-
sible. What we need is fine-grained parallelism without the explicit use of locks, so that the
model is safer to program in, and without asynchronicity, so that programs are easier to rea-
son about. This, we believe, can be achieved through process-oriented design [19], built on
the solid foundation of the process algebra CSP. Process Oriented Design uses synchronous
channel communication, no locks, and no shared data. Each process is in full control of its
own data; thus, no race conditions can ever occur. The following three points are important
for optimal utilisation of multi-core processors; we believe they are provided by process-
oriented design and programming with the system we describe in this paper.

• Architecture size independence: To fully utilise all the computing resources of a multi-
core system, a concurrent program should consist of more processes than cores, at
least if the code being implemented is not embarrassingly parallel.

• Verification: process-oriented design is based on the mathematical formalism of CSP
and the π-calculus [20], which means that we can formally reason about the programs
(the communication parts, at least) through the rigorous rules of the underlying math-
ematical model. We also can use tools, such as the model checker, FDR 2 [21], to
prove properties about the code, including lack of deadlock or livelock.

• Efficiency: Extremely efficient runtime systems for multi-core architectures exist that
support process-oriented programming [22,23], and we plan to make use of them.

These design principles and programming models were utilised on the Transputer, a CPU
developed by INMOS, a British semiconductor firm, in the 1980s [24], these models were
not mature for general computing at the time. The Transputer architectures were not like the
multi-core architectures of today. As hardware matured, it became obvious that it is time to
revive, re-invent and further develop the process-oriented programming/design model. In this
paper, we describe the ProcessJ suite, including the design of a new language, tools for devel-
opment (IDEs and graphical ’modular programming’ interfaces), and built-in verification. In
addition, we will develop teaching materials to make the model available to students, includ-
ing a process component repository, online cloud storage, and a programming-in-a-browser
tool. This combines online access to the compiler, and allows code to be run in the browser,
with the possibility of incorporating it in a Web page with video clips as well as web-page
text and pictures, something which is gaining momentum in the online teaching world.
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1.3. Other CSP-Inspired Languages

occam is not the only language with channels and CSP-inspired semantics. One such lan-
guage is XC [25], developed by Douglas Watt and David May (who, of course, was the de-
signer of occam) at XMOS. As its name implies, XC has C-like syntax, with CSP-style ex-
tensions designed to take advantage of the XMOS processor architecture. XC programs are
written for the XMOS architecture, and require XMOS emulators to run on other hardware
platforms. Another CSP-inspired language is Go [26], developed by Robert Griesemer, Rob
Pike, and Ken Thompson at Google. Go borrows the idea of channels from CSP, and has
goroutines (coroutines) that communicate over these channels. Go channels are synchronous
by default, but are buffered and can be specified as asynchronous, at which point the program
becomes more Actor-inspired [27] than CSP-inspired.

2. Process-Oriented Design, CSP and Formal Verification

Building a programming model and language on top of a mathematical formalism like CSP
provides an extremely robust foundation. We can actually prove things about the code we
write, even without running it. Static proofs can be constructed for the absence of deadlocks
or livelocks. A concurrent system can be verified before it is implemented, and different sce-
narios of behavior can be explored; best of all, no testing for concurrency errors is ever nec-
essary. This alone should reduce the amount of time and money spent on testing; further-
more, we actually know more about the behavior of the code, after using the model checker,
than we would by only testing it. Therefore, more confidence can be placed on the products
developed.

The process-oriented programming model is a perfect fit for much of the technology be-
ing developed today, including robotics, UAVs, and other component-based systems. Many
systems that would benefit from a multi-core CPU consist of semi-autonomous sub-systems
that, if programmed using the standard thread-and-lock model, easily become an entangled
mess that cannot be reasoned about. Unless Object Oriented programming models are signif-
icantly changed to behave exactly like the Actor model [27,28], with each object running in
its own thread, there is not much to be gained [29,30,31].

In a process-oriented system such as the one we propose, sub-systems can be pro-
grammed independently, verified and tested; the composition of such sub-systems can be ver-
ified as well. Since CSP has composable semantics, so will the processes in the language. For
example, there is no need for explicitly testing if an aircraft’s control system fails to respond,
and deadlocks, if the auto pilot is switched off at the same time as the flaps are extended. Such
problems can be formally proven to be absent or present before the model is implemented.

To better appreciate the proposed project, it is worth focusing on what process-oriented
programming and design is. The basic tenet is that a program consists of a number of pro-
cesses, possibly executing concurrently; however, each executes in their own thread of control
and each is 100% in control of its own state (data). Processes communicate through directed
channels that are connected to a sender and a receiver – or multiple senders and receivers, in
the case of shared channel ends. All communication is synchronous, something that enables
us to reason and prove properties about our programs. Processes can be composed in se-
quence, e.g., statements in Java or C using the “;” operator; or in parallel, e.g., using the PAR
construct in occam-π. We can model such a language — or at least the concurrency and the
communication — by using the mathematical formalism CSP developed by Hoare [11,12],
and extended by Roscoe [13]. FDR 2 [21], a formal model checker, can be used to statically
verify properties about our programs.

Process composition facilitates local reasoning, that is, reasoning about a process at any
level of composition. Local reasoning permits reasoning about a process, in isolation, without
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having to reason about the other processes it contains, or interacts with. Contrast this with
Java’s thread-based method invocation semantics, as described by Welch [29]. Threads of
execution weave in and out of many objects as methods are invoked from inside the bodies of
other methods. Objects are at the mercy of any other object that has a reference to it, and there
is nothing to stop passing as a parameter the reference of one object to another (aliasing).
Objects are passive; they are not in control of their own destiny. Methods may be invoked
at any time, regardless of whether the object is ready. To reason about object behavior is to
follow the spaghetti trails of threads of execution in and out of multiple objects; that is, one
must reason about many objects to reason about the behavior of one object. This is not so
with process-oriented design.

In addition to what we already described, CSP supports the idea of external choice. When
executing a receive call on a channel, since the communication semantics is synchronous, a
process is blocked until the sender is available to transfer data; however, this might not always
be what a process wants. An external choice operator, often referred to as an alternation, is
the ability to choose between several events — typically input, but also could be timeouts or
barriers — and to nondeterministically choose from one of the events that are ready.

CSP reifies nondeterminism in a concurrent program by making external choice avail-
able explicitly through alternation. By avoiding alternation in a concurrent program, the pro-
gram remains deterministic! In other words, process-oriented concurrent programs are de-
terministic by default! By giving the programmer the choice of when she needs to explic-
itly introduce alternation into a program, the programmer controls when a program may be
nondeterministic!

With these seemingly simple primitives — parallel composition, synchronous commu-
nication, and alternation — we can write quite powerful concurrent code; even better, we can
reason about it and prove properties, freedom from deadlock and livelock.

3. New Languages, Education and Teaching

One obstacle faced by new languages is that the general public does not use them. This poses
a serious risk. However, we believe that since the idea of teaching concurrent computing is
becoming more and more common, and since both the IEEE and the ACM are including
parallel programming in their core curriculum [32], we believe that if a language is packaged
with the right tools — integrated development environments, graphical programming tools,
and online teaching tools — as well as a comprehensive library of support material (lesson
plans, notes, slides, etc.), there is a much greater chance for a language to be used in a
teaching setting. The more people who learn it, the greater the chance it will make its way
into industry.

For this reason, to support teaching process-oriented design and programming in the
classroom or to anyone who has an interest, we propose a project that integrates both a tech-
nical part — writing the software to support the new language and its tools — and an edu-
cational part that leverages an online approach. The project we propose includes developing
a new process-oriented language, IDE/GUI tools, online programming tools, lecture plans,
course descriptions, notes, and other support materials.

4. Proposed Work

The project we propose consists of two different yet intertwined parts: a technical and an
educational part. In the technical part, an appropriate language and the aspects associated
with implementing it will be developed. These aspects are not just about the compiler, but
also include such topics as graphical programming environments, runtime systems, and au-
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tomatic generation of scripts for code verification as well as an online process repository and
cloud storage, enabling easy process reuse and sharing. A JavaScript runtime and a compiler
back-end is proposed to interface with in-browser programming, an emerging trend in online
education. A tool that could be helpful in implementing this is Emscripten [33], a source-to-
source (LLVM to JavaScript) compiler, which translates LLVM bytecode, typically created
from compiling C or C++, to JavaScript. This would be an obvious solution (at least as a
proof of concept) as we plan to produce C++ code from the ProcessJ Compiler.

The educational part primarily will be concerned with developing materials supporting
the teaching and learning of techniques related to process-oriented design and programming
through the use of the ProcessJ language and the associated tools as well as the integrated
Web Online Teaching Tool. Such materials can include lectures notes, slides, handouts, ex-
ercises, and supplementary materials. A book, we believe, will be a necessity, and videos
would incorporate nicely into the online education experience.

Figure 1 illustrates the proposed ProcessJ suite. Boxes in light blue correspond to
projects that will be undertaken as part of the proposed work, and boxes in gray are existing
tools/resources that will be utilised in the project. Figure 1 contains three different types of
arrows signifying what a sub-project produces, what it is based on, and which other sub-
projects it uses; these three different types represent output, implemented interfaces, and in-
heritance.

Figure 1. The overall proposed work of the project.
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5. Technical Aspect

The technical part of this project is concerned with the actual software development, specifi-
cation, and implementation. The following steps are to be undertaken:

• Language specification: Study existing popular languages (like C/C++ and Java) and
develop a language specification that takes the familiar syntax and semantics of these
languages into account for all similar syntactic constructs; that is, the syntax and se-
mantics of a “while-statement” in ProcessJ is the same as in C/C++ or Java. New
primitives required for concurrency — such as process, channels, barriers, and alter-
nations — will have the same syntactic feel; however, the semantics will be that of
CSP.

• Compiler construction: Implement the compiler for ProcessJ using modern compiler
writing techniques and analysis. At first, we will utilise the CCSP/C++CSP [34,35,36]
existing runtime systems to provide an efficient and reliable execution environment,
later adding new runtimes or target architectures, such as clusters. One separate run-
time in JavaScript is already included in the project.

• Graphical Programming Environment / Integrated Development Environment: De-
velop a graphical programming environment that supports the compositional and nat-
urally layered approach that suits process-oriented design, including “programming
by pictures” [37,38] and code reuse through a “LEGO catalog” method [39]. This IDE
should interface with the compiler and the formal model checker, FDR 2, as well as
an online repository for sharing ProcessJ code.

• Auto-generated Program Specification: The compiler should automatically generate
CSP specifications of a program in machine readable form (CSPM), enabling auto-
matic verification of the absence or existence of deadlocks, livelocks, etc. [40]; fur-
thermore, the support of specifying assertions about the program in order for the
model checker to check should be supported [41].

• New back-end/runtime systems: Additional back-ends of the compiler targeting dif-
ferent execution architectures, such as clusters, using MPI, and the Java Virtual
Machine, possibly using JCSP [19,42,43]. As mentioned we have already planned
a runtime in JavaScript and a back-end code generator that produces JavaScript.
Other interesting runtime systems include the LUNA CSP-Capable Execution Frame-
work [44] and the light weight process MPI system [45] from the University of British
Columbia.

• Online Repository: To encourage code reuse and code sharing, an online process
source repository is planned, similar to the well-known app stores for mobile phones.

• Cloud Storage: To fully integrate the development and sharing of code in both the
IDE and the online teaching tool (See next bullet point), a cloud storage can serve as
a central hub for (private) code storage, making access available from any place with
a network connection.

• ProcessJ Online Teaching Tool: A tool to tie the educational and the technical aspects
of this project together is a Web based programming interface that can be placed on
Web pages along with text, video, pictures, etc. This uses the JavaScript runtime,
mentioned earlier, to facilitate execution of the compiled ProcessJ code directly in the
user’s browser. Such a tool will allow anyone to program in ProcessJ, and to execute
code on any platform that contains a browser that supports JavaScript, albeit not as
fast as on a multi-core architecture.
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In the following subsections, we investigate each aspect in greater detail. In addition, we
specify what experiences we have with each aspect topic, any work that has been done in the
area, and what remains to be done.

5.1. Language Specification

There are many reasons why a language is not successful. Some languages are hard to learn
and master, some have hard-to-understand semantic models, and others have poor syntax.
Naturally, this assessment could be subjective, and subject to arguments. Others believe that
languages who “made it” did so because they filled a void at just the right time in history.

We believe that now is the time for process-oriented programming to become popular;
however, rather than make the mistakes of other languages developed throughout history, we
are not going to make up a whole new set of syntactic rules, but rather take advantage of the
knowledge that programmers already possess. Our aim is to produce a language specification
that is syntactically similar to languages like C/C++ and Java, and which has the same seman-
tics for all the well-known sequential language constructs, such as loops and variables. Then,
we plan to introduce new process-oriented concurrency primitives — channels, communi-
cation, barriers, and mobile processes / channel-ends with their respective CSP/π-calculus
semantics — while retaining a syntax that would be familiar, or at least reasonably obvious,
to C/C++ and Java programmers.

CSP semantics apply to concurrency primitives like channel, channel-communication,
barrier, and alternation (i.e., choice of which channel, out of many that may be possible, to
engage). The semantics of the π-calculus apply to the mobility aspects of the language (mo-
bile processes and mobile channel ends). Mobility is an area in which we are very interested
and on which we have worked in the past. Our approach differs from the one (currently) taken
by occam-π [4,5], for example, in the way we implement interfaces to the mobile processes.
The occam-π approach uses a single interface for each mobile process, possibly requiring
dummy actual-arguments for some parameters that might not be referenced; we propose a
polymorphic approach, where each resumption of the mobile process uses a different inter-
face, something we have (theoretically) investigated in [46,47] and intend to include in Pro-
cessJ. At this point, we have a draft version of the ProcessJ language, which was used in [48].
Figure 2 shows a simple producer-consumer system written in ProcessJ, whose behaviour we
shall return to in Section 5.4.

What remains to be done to complete this task includes developing a solid model for a
package structure similar to Java’s package model, finalising a reasonable syntax for struc-
tured literals, and determining how heap allocated values should be handled, for example
whether to have explicit “free” or not, and if not, what sort of garbage collection the language
should support. Although not part of the language directly, time must be spent on integrating
into the ProcessJ language support for automatic verification; that is, an accompanying speci-
fication language must be developed. Some work already has been done on this incorporation
with our research colleagues at the University of Kent at Canterbury [40,41].

5.1.1. Aliasing and Usage Checking

One of the holy grails (assuming we can have more than one) of occam is the non-aliasing se-
mantics. This is something we strongly believe needs to be discussed, and perhaps rethought.
One the one hand, no aliasing is an extremely nice feature: it prevents us from making an aw-
ful lot of mistakes, some potentially real bad. On the other hand, non-aliasing also prevents
us from implementing a lot of very useful data structures (for example, circular lists).

We firmly believe that for a language to have a real impact, it is important that it is
general enough to allow the programmer to actually write the data structures that are needed
for the algorithms implemented. If non-aliasing within data structures prevents the language
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proc void Producer (chan<int>.write out) {
int x = 42;
while (true) {

while (x < 1000) {
out.write (x); // write to channel
x++;

}
while (x > 0) {

out.write (x); // write to channel
x--;

}
}

}

proc void Monitor (chan<int>.read in) {
int last = in.read (); // read channel
while (true) {

int x;
x = in.read (); // read channel
if (x == last) {

... system failure detected
}
last = x;

}
}

proc void main() {
chan<int> c;
par { // in parallel do ...

Producer (c.write);
Monitor (c.read);

}
}

Figure 2. A two process producer-consumer system in ProcessJ. The Monitor process checks that the
Producer never sends the same number twice in succession (i.e., that Producer does not violate such a condi-
tion in its specification). A CSP model, verifying that this system failure will not happen, is shown in Figure 4.

from being fully utilised, then perhaps aliasing should be allowed in certain circumstances;
but the programmer should be aware that, that in those circumstances, some things cannot be
checked by the compiler. Not giving the programmer the freedom to design the data structures
the application needs hampers the usability of the language, which is not an attraction.

We hope this topic will form the basis of a heated debate in the process oriented com-
munity — it is something that needs to be considered. It touches upon the age old issue with
how strict compilers should be (how restrictive are the semantics of the language?) and how
much responsibility can be safely given to the programmer. We strongly believe that a middle
ground, with the possibility of support from the compiler when needed, is the best approach.
We note that Barnes’ design of Guppy [49] (a spin-off language from occam-π) and the
discussion proposals from Welch [50] (in these proceedings) incline to this view.

As an important side note to aliasing is the issue of parallel usage checking; having
the compiler guarantee no memory location is accessed concurrently in a way that might
create a race hazard is a strong semantic check. It is an extremely useful feature to have,
but unfortunately, it becomes even more difficult if aliasing is allowed. We have not yet
decided on where to draw the line with respect to aliasing, but parallel usage checking is
something that will impact this decision. However, part of the future research of this project
is to establish a balance between semantic strictness of the language and the usability; both
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are extremely important subjects, and several papers on this subject alone could be written.
Enough to say for now that we are aware of the issue and it will play an important role in
defining the semantics of the language and the implementation of the compiler.

5.1.2. APIs

Arguably, one of the reasons occam has not enjoyed more widespread adoption (apart from
its Transputer roots and indentation syntax, which was not fashionable until Python came
along) is its lack of APIs for certain common utilities. For example, utilities that provide the
ability to interact directly with the underlying OS and network, as well as access to common
collections classes (arrays and records are not the only data structure programmers desire).

The CSP model, at its core, is composed of sequential processes. The ProcessJ API
should permit access to processes written in native code (e.g., C for systems calls), as well
as provide collections classes. We’ve previously discussed (in Section 5.1.1) the challenges
and necessity of supporting aliasing. Perhaps wrapping such recursive data structures in a
collections API is one way forward. Regardless, APIs must exist for a language to be useful,
and they must be extensible and allowed to evolve with the feedback of the language’s user
community.

5.2. Compiler

A language without a compiler is, of course, a dead language; therefore, we propose the de-
velopment of a new compiler written in C/C++ for speed, which, besides the regular parsing,
scope, and type checker, etc., will produce code that can be linked with the CCSP/C++CSP
runtime [35,36,22]; this is a highly efficient multi-core runtime system for process-oriented
languages, developed and maintained at the University of Kent at Canterbury. We have au-
thored papers [51,52,53,40,41,54,9] and done research with this group in the past, and we
are actively working with them now. We anticipate a close collaboration between our two
institutions and the Kent group. It should be noted that many of the people who have worked
on several occam-π compilers — Fred Barnes and Peter Welch (KRoC [55]) as well as Neil
Brown (CHP [56]) — are still associated with this group, something we view as an asset for
support in the development process.

As a proof of concept, a Java version of the ProcessJ compiler was implemented by a
UNLV M.Sc. student [48]; this implementation in Java was slow and extremely incomplete; it
contained virtually no semantic analysis. As stated, a new compiler written in C++ is needed,
and two research undergraduate students at UNLV currently are working on this project. We
have a working scanner and parser as well as parse trees; however, no semantic analyses
or code generation have been implemented. Part of the implementation of the compiler will
include automatically producing CSP scripts; this will be described in Section 5.4.

5.3. Graphical Programming Interface / Integrated Development Environment

Today, many popular programming languages, such as Java, C#, and Objective C, have very
sophisticated programming environments: NetBeans for Java, Eclipse for Java and many
other languages; Visual Studio for C#; and Xcode for Objective C. We believe that provid-
ing good programming support in terms of an integrated development environment can help
boost a language’s availability and reduce its learning curve. We have worked on a prototype
for such an IDE for occam-π, called Visual occam [37] (see Figure 3). This prototype was
by no means a finished product, but it taught us important lessons about what such an IDE
must contain.

Since ProcessJ is a process-oriented language, the underlying model consists of pro-
cesses that are composed in parallel, and which communicate through the use of channels.
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This model is a perfect fit for a graphical programming tool, in which processes and chan-
nels as well as barriers are visualised. Figure 3 shows a number of processes and channels.
A graphical tool like this can support a programmer in developing and maintaining a library
of processes that can be reused; we often refer to this as the programmer’s “LEGO catalog”
because processes, like LEGO blocks, serve as building blocks for bigger structures: LEGO
blocks click together, and processes compose by the means of channels and barriers. Once
a programmer has a process, which itself can contain several levels of other concurrently
composed processes, he or she can add such a process to the catalog of existing, reusable
processes and, at a later date, simply drag it back into the IDE and reuse it.

In keeping with this idea, the online process source repository (Section 5.5) goes hand
in hand with an IDE; it should integrate flawlessly with the “LEGO catalog” functionality
of the IDE, allowing the programming to move already written processes from the reposi-
tory to the local “LEGO catalog”. Since verification is one of the pillars of process-oriented
programming and development, the IDE should be able to interface with the compiler and
also with the verification module (FDR 2). It should interpret the output of the verifier and
relate it back to the source code, if possible. In other words, it should be possible to perform
all the actions necessary from within the IDE; this ranges from process design at the source
level, process layout (the boxes on the middle canvas in Figure 3), through to verification in
the model checker (FDR 2). No work has been done yet specifically towards this sub-project.
However, many important lessons were learned in the development of Visual occam, and we
believe that we have a good idea of the pitfalls and what to do better in order to produce a
highly usable IDE for ProcessJ. For a proof of concept that this kind of feeding back from
the output of FDR to source level is possible, see the ASD:Suite by Verum [57]. FDR was
integrated into their tool set and if a check for deadlock or livelock fails, the trace leading to
it is presented in terms of a message sequence on the input model and its states and events.

Figure 3. Visual occam (M.Sc. thesis proof-of-concept programming GUI.)
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5.3.1. Documentation

The graphical process diagrams can also be used as part of the documentation, perhaps along
with a JavaDoc style of comments, to generate comprehensive (online) documentation; this
is an area we have not considered extensible, but which will become fairly important for the
usability and learning curve of ProcessJ and its tools.

5.4. CSP Specifications

As argued earlier, one of the strengths of a language based on a mathematical formalism like
CSP is the ability to prove properties of the programs. ProcessJ will be based on CSP process
algebra — and also the π-calculus for mobility (although the FDR tool does not currently
support verification of mobility). Thus, a one-to-one correspondence between runnable code
and verifiable specification will exist. This is further discussed in [40,41].

We believe that such a mapping can be automated and added to the ProcessJ compiler,
like a new target language. Rather than targeting the CCSP/C++CSP runtime, we will produce
CSPM, which is the machine-readable form of CSP accepted by the model checker FDR 2.
For example, Figure 4 shows the CSP model of the producer-consumer system in Figure 2,
with an assertion that the system is deadlock-free added at the end.

Producer (out) = ProducerUp (out, 42)

ProducerUp (out, n) =

if n < 1000 then

c!n -> ProducerUp (out, n + 1)

else

ProducerDown (out, n)

ProducerDown (out, n) =

if n > 0 then

c!n -> ProducerDown (out, n - 1)

else

ProducerUp (out, n)

Monitor (in) = in?x -> MonitorLast (in, x)

MonitorLast (in, last) = in?x ->

if x == last then

STOP -- system failure detected

else

MonitorLast (in, x)

channel c : {0..1000}

Main = (Producer (c) [| {|c|} |] Monitor (c)) \ {|c|}

assert Main :[ deadlock free [F] ]

Figure 4. CSPM specification for the producer-consumer system in Figure 2.

FDR verifies this assertion. This means that the STOP in Monitor can never happen, since
otherwise there would be deadlock. In turn, this means that consecutive numbers output by
Producer are never the same, since otherwise the STOP would have been reached. Therefore,
in systems incorporating this Producer process, there is no need to program the run-time
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checks implemented by Monitor in any processes taking its production — we have verified
that Producer fulfills this specification. So, production code can safely dispense with such
run-time monitoring. This is a powerful win from formal analysis and deadlock checking.

CSP is powerful enough to prove properties such as trace refinement (i.e., that the event
sequences the refined process can perform are event sequences of the original, usually called
the specification) and failure refinement (i.e., that the sets of events the refined process can
refuse, in any of its states, are sets of events also refused by the specification). Trace refine-
ment establishes safety: only specified event sequences can happen. Failure refinement estab-
lishes liveness: if the specification says that certain events will happen (i.e., that they will not
be refused), then they will happen in the refined process!

These are strong properties of the process algebra, which we think should be accessible
from the ProcessJ language, so that verifictaion becomes part of normal programming prac-
tice. Such an approach should greatly narrow the chasm that currently exists between imple-
mentation and verification language. If the two are not significantly alike, proving that the
formal model is a correct abstraction of the implemented code becomes almost as daunting
as the verification process itself. We believe that by narrowing this gap and automating the
process, there is a much greater chance that verification will be used more frequently.

As a side note, we have taught verification using FDR 2 and CSPM in courses. Students
find these tools which we use to verify programs almost as easy to understand as the programs
themselves. The ultimate goal is to reach a state where verification is just programming, and
we think we can do that.

No work pertaining to the proposed project has been undertaken to date; however, early
investigation has begun. Currently we are working on a research paper with the Kent group
concerning this subject that should lay a solid foundation for completing this sub-project.

5.5. The ProcessJ Process Repository

As described in Section 5.3, in addition to a local LEGO catalog within the IDE, we propose
an online repository—much like the Apple App-store and Google’s Android Market, where
developers can share source code for processes they have written. Such a repository should
integrate into the IDE as well as the online tool set, and also have a searchable/browsable
Web interface. Users can upload their ProcessJ code for other programmers to use. Processes
are divided into categories so they can be browsed either through a Web interface (directly
or through the ProcessJ Online Teaching Tool, allowing for transfer from the repository to
the user’s own private cloud storage—See Section 5.8) or through the IDE. Such a repository
should of course be searchable. Furthermore, we propose the possibility of associating CSPM

verification certificates with uploaded code. That is, when a user uploads a piece of source,
each process can have CSP code associated with it, and in addition typical things like dead-
lock, livelock etc. can be marked as ’checked’. This enables other users to know about certain
properties of the code before they download and use it.

The process repository does not require any development of new tools, but simply an
implementation using HTML and also a database. However, we believe it forms a key feature
in making ProcessJ a common language: the more libraries and publicly available code, the
easier the development gets of new code. No work has been done on this either; however, this
can be undertaken as a completely independent project from much of the other development
that is required for the project.

5.6. Multiple Back-Ends/Architectures

As proposed in Section 5.2, the first iteration of the ProcessJ compiler will target the CC-
SP/C++CSP runtime; that is, it will generate C or C++ code that gets compiled and linked
with the runtime using the gcc or g++ compiler. The CCSP/C++CSP runtime is specifically
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developed and optimised for multi-core architectures; however, as already seen, we might
need to generate code for different targets/back-ends. We have already mentioned two: CSPM

for use in the FDR 2 model checker and JavaScript for the ProcessJ Online Teaching Tool.
To make process orientation more available to other platforms/targets/architectures, we have
considered a number of possible other back-ends:

• Instead of generating C/C++ and linking with the CCSP/C++CSP runtime, we could
generate Java and link with the JCSP [43] library. This would make process-oriented
programming available on architectures that do not support the CCSP/C++CSP run-
time; not particularly efficient, because it is built upon Java threads.

• Clusters that often use MPI [58] (and C) could also run process-oriented code. The
compiler would then generate C with MPI calls rather than CCSP/C++CSP calls. A
particularly interesting possibility is the MPI implementation from The University of
British Columbia [45] which supports much finer grained levels of parallelism than
the regular MPI implementations.

• Other virtual machines could be targeted, such as the LLVM [59]. In [22], a translator
for ETC (Extended Transputer Code) to LLVM was developed.

Countless other targets exist, but we will focus on the MPI and the JCSP targets.

5.7. The ProcessJ Online Teaching Tool (Technical Part)

The recent success of massive open online courses (MOOCs) in attracting student interest
from around the world is impossible to ignore. With the use of recent technologies incorpo-
rated into major Web browsers under the umbrella term of HTML5, it is now possible to offer
highly interactive online computer science courses, which run entirely within a student’s Web
browser.

By producing a ProcessJ compiler back-end and runtime system that targets JavaScript,
ProcessJ code can be executed directly within the Web browser environment. The core of the
ProcessJ Online Teaching Tool will consist of four main components:

• The code editor/debugger interface for writing ProcessJ programs in the browser.
• A ProcessJ to JavaScript compiler back-end, which will run on a server and compile

programs on demand.
• The ProcessJ JavaScript runtime system, which will provide concurrent execution of

processes in the single-threaded JavaScript interpreter using co-operative multitask-
ing.

• A ProcessJ API for the HTML5 canvas for interactive graphical programs.

In addition to the online programming environment, the ProcessJ Online Teaching Tool
will provide access to learning materials and provide a framework for automated grading of
students’ programming exercises. With these features in combination, self-contained online
classes can be produced that can be accessed by students in any place and at any time. Figure 5
shows a mock-up of the ProcessJ Online Teaching Tool. We discuss similar browser-based
IDEs and online learning environments (for other languages) in Section 6.3.

5.8. Online Cloud Storage

Since an integral part of the ProcessJ suite is the online programming environment, which
enables a programmer to develop ProcessJ code from any Web browser, the issue of code
storage arises. To make available a user’s code in any Web browser (on any computer with a
Web browser that supports JavaScript and is connected to the Internet), code cannot be stored
locally (at least not as the only location for the code).
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Figure 5. A Web mock-up of the ProcessJ Online Teaching Tool (PJOTT).

We propose an online cloud storage (in the style of Dropbox [60], though not user man-
aged to the same extent), that integrates the online programming environment, and the inte-
grated development environment as well as the Online Repository.

A user logs into his or her cloud storage and the code is immediately available to the
in-browser development environment; similarly, logging in within the IDE will make all the
cloud storage code available.

Furthermore, the cloud storage makes getting code from and putting code into the Online
Process Library an easy task. Cloud storage enables additional possibilities, and we envision
many possible extensions. For example versioning and sharing. As the project develops, more
extensions will surely be included.

One possible implantation of this could be on top of Google Drive, using the Google
Drive SDK [61]; alternatively, GitHub [62] could be utilised through the graphical user inter-
face, or even the ProcessJ website. There are many ways to implement online cloud storage,
and implantation wise, it might be a great idea to allow a plug and play situation, where the
user can decide which system he wants to use (Google Drive, GitHub, Dropbox etc.)
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6. Educational Aspect

Every ten years, an ACM-IEEE Computer Society joint task force puts out an updated doc-
ument containing guidelines for Computer Science curricula; the latest version, Computer
Science Curricula 2013 (CS2013) [32], is due later this year. The latest draft (Ironman Draft
Version 0.8) includes information about important (and exciting!) changes for the curriculum,
especially regarding what topics are considered “core”. The last time full guidelines were
published in 2001 [63], and in interim updates [64,65], parallel computing wasn’t identified
as its own Knowledge Area within the Body of Knowledge. The story is different this time
around: in 2012, the joint task force stated, when questioned about new topical areas that
should be added to the Body of Knowledge, survey respondents indicated a strong need to
add the topics of Security as well as Parallel and Distributed Computing . . . CS2013 includes
these two new KAs (among others): Information Assurance and Security, and Parallel and
Distributed Computing [32]. Concurrency should not be a last resort to gain performance, but
should be taught as a fundamental model of interaction between processes. Supporting such
a way of thinking both from an educational side as well as a programming-language side,
for example, the use of a process-oriented language, makes concurrency as easy to approach
for students just beginning their programming careers as any other sequential construct; one
might argue that fully understanding state and mutation is even harder than synchronously
communicating processes.

It is not a surprise that parallel computing has been reified in CS2013; Moore’s Law has
plateaued over the last decade, replaced by a focus on Amdahl’s Law [66] to promote the
development of ever-larger multi-core processors. As discussed in [67,68], the free lunch is
over. In other words, in order to continue enjoying increased performance, we have to learn
to harness the power of multi-core processors. We can no longer count on a faster processor
coming out next year. Our challenge is to write better parallel programs and also to teach the
next generation of programmers and computer scientists how this can be done.

Assuming we are completely successful in developing ProcessJ and its supporting tools,
that wouldn’t be enough to call it a day. We must provide a compelling set of materials for
courses and course modules for faculty to use in the classroom. We must provide a path for
teachers and professors to learn this material well enough that they can teach it to their stu-
dents. To help get the word out, once the ProcessJ compiler is ready for broader use, we plan
to offer workshops at parallel computing conferences, including the formerly named Super-
computing (SC) conference, now named the International Conference for High Performance
Computing, Networking, Storage and Analysis; and the International Parallel and Distributed
Processing Symposium (IPDPS). Once the ProcessJ Online Teaching Tool is ready, we plan
to offer workshops at such computer science education venues as SIGCSE and one or more
of the regional CCSC conferences. We have some experience, through the CPA community,
in presenting during teaching tracks and tutorials at conferences.

6.1. Learning Materials

Even as parallel processing enjoys a higher profile and recognition as a new Knowledge Area
and core topic within the CS2013 guidelines, much of what people know about the topic is
either limited — parallel and distributed computing is not everyone’s area of expertise — or
misunderstood — what is currently popular or being promoted regarding multi-core program-
ming is not the only approach to solving these problems. Some people may think that threads
and locks as well as shared memory is the only approach to multi-core programming. Others
may know about asynchronous message passing, but not synchronous message passing.

The CSP model and process-oriented design, despite its long history, is still not in the
mainstream, and what people think they know about it is wrong. It is our responsibility to
provide learning material that both educates and re-educates our prospective audience regard-
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ing Process Oriented Design, while accommodating the different learning styles and environ-
ments of today’s faculty and students. We will provide sample lecture notes, assignments, and
video tutorials that present individual topics as well as demonstrate the use of the ProcessJ
compiler and online teaching tool. These materials will be accessible online through a Web
browser accessing the ProcessJ Web pages. We also will provide an online community space
for teachers and practitioners to ask questions and exchange ideas, following the model of
BlueJ’s Blueroom [69].

The biggest obstacle we must overcome in our learning materials is the long-standing
reputation that concurrent programming is hard, error prone, difficult to get right, and vir-
tually impossible to reason about. For example, Muller and Walrath, in an article by Sun
Microsystems on Threads and Swing [70] state:

“If you can get away with it, avoid using threads. Threads can be difficult to use, and they
make programs harder to debug.”

This may, in fact, be a well-deserved reputation in the mainstream of concurrent processing,
but it doesn’t apply to process-oriented design. The challenges of unwanted nondeterminism,
race hazards, and deadlock do not go away; they simply don’t enter the picture in the first
place. Our materials must illustrate that process orientation is the right model and abstraction
for modeling our parallel world.

We have some very elegant, time-tested approaches to teaching process-oriented design,
using Welch’s ‘LEGO’ catalog method approach to processes [39]. We have used such li-
braries of processes in our courses for the last decade of teaching our own concurrent pro-
gramming courses, and will implement this library for the new ProcessJ language. These pro-
grams and exercises build parallel programming skills on top of students’ existing sequential
programming skills so that parallel composition becomes just another programming abstrac-
tion, like sequential composition, conditional statements, recursion and iteration. Because
processes compose, process-orientation is a natural way to deal with complexity, including
underlying parallelism. This approach also illustrates how we write parallel programs at much
finer-grained level of parallelism than prevailing conventional wisdom currently believes is
feasible.

6.2. Course and Module Templates

The CS2013 guidelines are broken down into Knowledge Areas that do not necessarily cor-
respond to full courses. This allows for maximum flexibility for departments to design their
curricula according to their particular levels of staffing, expertise, and numbers of students.
As mentioned earlier, Parallel and Distributed Computing is a new Knowledge Area, but not
all programs will decide to add a dedicated course in parallel programming. One option is
to distribute parallel programming topics among several existing courses, for example, Al-
gorithms, Operating Systems, Computer Architecture, and (we hope) introductory courses.
This means we need to provide building blocks that can be put together into a single course
or spread out among courses in existing curricula; the more self-contained we can make these
building blocks, the more flexibility faculty and departments have in using the materials we
provide. We will offer modules that can be used in a variety of courses, including algorithms,
architecture courses, operating systems courses, and software engineering. We will use the
CS2013 guidelines as a source for categorising different modules; in this way, faculty and
departments can most easily use our ProcessJ materials in conjunction with the CS2013 doc-
ument to revise their curricula to accommodate increased coverage of parallel processing
material. We also will recommend different possibilities for a dedicated course in parallel
processing, stressing the value of process-oriented design.
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6.3. The ProcessJ Online Teaching Tool (Educational Part)

With the ProcessJ Online Teaching Tool (PJOTT), the technical and educational parts of
this project intersect. PJOTT will provide students with a browser-hosted interface to access
ProcessJ and its planned online resources. It also will make using ProcessJ in the classroom
more convenient for faculty with limited resources because it won’t be necessary to arrange
for the installation and configuration of another programming language or IDE in their labs.
Browser accessibility means faculty and students can focus on process-oriented design from
Day One. This intersection of the technical and educational provides an important feedback
loop for improving the tool and its interface for students, based on ongoing feedback. Another
advantage of providing a browser-based IDE is that changes to PJOTT are centralised on
the server, and don’t require pushing out changes for the users. Each time the browser loads
PJOTT, users access the latest version. This is good, because it takes time, effort, and user
feedback to develop a well-engineered interface that follows pedagogically sound guidelines
for online learning tools. What good is a lot of information if it is not organised and presented
in an intuitive manner?

Other languages now have browser-based online learning playgrounds. Some examples
include GoLang [71], Codecademy [72], and CodingBat [73]. While GoLang specialises in
the Go language, Codecademy and CodingBat support learning multiple languages. These
online learning environments have some similarities but different missions and goals. Cod-
ingBat provides a set of problems to be solved, and an editor with a run button for users to try
to solve them. The teaching takes place elsewhere; CodingBat is a place to practice one’s Java
or Python coding skills. Codecademy provides courses for a larger set of languages using tu-
torial style lessons. These tutorials including an editor for users to type in their solutions each
step along the way, and check for correctness. Codecademy attracts both students and teach-
ers, providing a framework for both. Codecademy also provides a playground for several lan-
guages for users that just wish to have access to these languages from their browser. GoLang
is a portal to all things Go-related, including providing an online editor and interpreter, and
examples of programs that can be run from the browser. These existing online learning re-
sources provide proofs of concept for some of what we plan to do for the PJOTT; however,
we envision a deeper and more comprehensive integration with the teaching materials.

7. Conclusions and the Environment

We would like to conclude our paper, but we also feel it would be helpful to comment on the
environment of this proposed work. Hoare introduced through CSP the notion of reasoning
about the meaning of a computation through reasoning about its trace of observable events
recorded by an Olympian observer. These observable events were offered by the Environ-
ment, and engaged in by the processes composed in a process network. Process-oriented de-
sign as a programming paradigm also exists within a larger environment, and if it is to suc-
ceed and become widely adopted, the process-oriented community must find a compelling
way to communicate its ideas within this environment: the greater concurrency and high
performance computing community.

7.1. Conclusions

We have presented what we believe to be a complete system for a new process-oriented
programming system that is extremely well suited to take full advantage of today’s multi-core
architectures. This system includes a new process-oriented language, ProcessJ, rooted in the
mathematical process algebra CSP. Programs written in ProcessJ are verifiable with respect
to their concurrency. In addition, a programming environment and online code libraries and
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online storage are proposed as well as an online teaching tool, which allows for in-browser
programming.

From an educational point of view, we propose creating course descriptions, support
material, notes, and slides; in other words, anything needed to teach a course about process-
oriented programming and design at the college level. The online teaching tool utilises these
techniques to make such course material available to anyone with a Web browser. We believe
this can be a very exciting project; the modularity of it means that a great many people
and institutions can be involved with the development at the same time. We strongly believe
that if the entire community pulls in the same direction, towards the completion of a suite
like described in this paper, we stand a much better chance of ’reviving’ process-oriented
programming for the masses.

7.2. The Environment

This paper also formed the basis for an NSF proposal for around $750,000; however, the
proposal was not funded, but three reviews were returned, and since this is a paper about a
possible future of process-oriented programming, we would not do it justice without reporting
the major issues found by the reviewers. We believe this can not only help shed some light on
how to approach this project, but also give some ideas about what the scientific community
(who are interested in concurrent programming) in general thinks about process-oriented
design.

It seems that the scientific computing community thinks only in terms of HPC and shared
memory, and if they ever deviate from that, MPI is as far as they are willing to venture. One
of the comments was:

“At times, the proposal is talking about CSP as a panacea. Unfortunately, this (in my
opinion) reveals ignorance of the richness of both the problem space (types of applica-
tions) and the solution space (known models for parallel or concurrent computation), and
thus undermines the credibility of success. For example, try writing a well-performing
parallel matrix multiplication in CSP.”

We believe that such statements actually shows the lack of understanding by the reviewer
(and thus we might conclude by the broader community as a whole) both as to what CSP
is (it’s not a programming language!) and that noone is proposing a panacea. We are not
suggesting that all problems be solved with process-oriented design, but that the tasks for
which process oriented design is tailored may be solved by using it — and that the breadth
of application be explored. Apart from the fact that a version of matrix multiplication could
be implemented extremely efficiently using a systolic array (which could be programmed
easily using process-oriented programming techniques), we are not proposing that process-
oriented design and programming should be utilised for all scientific and HPC programming;
but we are advocating that it be used for embedded system like setups, where either the hard-
ware directly maps to processes or, on shared memory systems, where the problem naturally
decomposes to processes.

We believe there is a perception that after deriding parallel computing as not necessary
to perpetuate the prophesy of Moore’s Law for 30+ years, now that we have hit the wall for
clock speed and multicore has come along, they are going to deride concurrency and make it
a scapegoat if it now cannot perform that service. But we know there are limitations to speed-
up, which gives rise to the speed-up myth (solve a problem of size N on one processor in
timeN means we should be able to solve a problem of sizeN on P processors in timeN/P ).
Some problems are more amenable to speed-up than others. They look at matrix multiplica-
tion as an embarrassingly parallel (or more politically correct these days, “pleasingly paral-
lel”) algorithm; but that is based on a shared memory model of concurrency. Process-oriented
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design and programming is not a shared memory model, although it works extremely well on
shared-memory platforms [22,23]! If your problem is matrix multiplication, and you have the
cores, you may use a shared memory model — but communicating processes may also work
(and be simpler). However, most problems do not have embarrassingly parallel solutions and
their needs are for interesting and rich patterns of interaction between the sub-components
that will solve them. Process orentation is looking to address this more general class of prob-
lem, as well as those more regular systems whose needs for memory vastly exceeds that
which can be supported by a single memory bus fought over by a host of processor cores.

Programming-with-pictures is an extremely important approach to process-oriented de-
sign, and its strengths must be emphasised in the future. A lack of understanding of the im-
portance of composability is shown by comments such as:

“The inclusion of a graphical interface / IDE is a nice idea, but orthogonal as a research
problem.”

and:

“Graphical IDEs have been around forever, but have never made it beyond the fringe.
They tend to survive only if supported by a monopolistic proprietary owner.”

Finally, it seems that the community does understand the importance of verification, and
they do seem familiar with the strengths of CSP, but they often fall short with comments like:

“Can’t you just use Google’s Go?”

In conclusion to these reviews and comments, we believe that the following issues must
be emphasised in the future to better promote process-oriented programming and design:

• Process-oriented programming and design is not trying to be a panacea; we do not
propose implementing all algorithms in this fashion, but we do propose using the
design and programming techniques to those problems that naturally fit the paradigm;
these include, but are not limited to, embedded systems and safety critical concurrent
systems, such as control systems for machinery, aircraft, etc.

• Reusability and composability are important; and communicating processes, in par-
ticular, can be separately reasoned about, verified and reused.

• The relationship between verifiability, composability and code reuse does not seem to
be recognised and must be emphasised.
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A. The ProcessJ Home Page

We currently have a Web page in place at http://www.processj.org, the main page of
which can be seen in Figure 6.

Figure 6. The ProcessJ home page.


