
Mobile Process Resumption In Java Without
Bytecode Rewriting

Matthew Sowders
University of Nevada, Las Vegas

Las Vegas, Nevada 89154
E-mail: sowders@unlv.nevada.edu

Jan Bækgaard Pedersen
University of Nevada Las Vegas,

Las Vegas, NV, 89154,
E-mail: matt.pedersen@unlv.edu

Index Terms—ProcessJ, Process-Oriented Programming, Mo-
bile Processes

Abstract—In this paper we describe an implementation of
mobile processes with polymorphic interfaces in the ProcessJ
language. ProcessJ is a process oriented language based on CSP
and the π-calculus. In the paper we demonstrate the translation
of ProcessJ to Java/JCSP and illustrate how to implement
mobile processes with polymorphic interfaces without rewriting
bytecode; this requires some clever code generation in Java since
it does not support polymorphic interfaces.

I. INTRODUCTION

In this paper we present a technique for implementing
transparent mobile processes with polymorphic resumption
interfaces for the ProcessJ language in Java/JCSP.

As part of the ProcessJ compiler, we have developed a
code generation technique that allows a process to suspend,
and subsequently resume, in the middle of a code block.
When translating the ProcessJ code to Java/JCSP, a direct
translation is not possible because Java does not support
process suspension/resumption natively; nor does it support
polymorphic interfaces.

Unlike previous attempts at resumable processes in Java [1]
which describes a technique for implementing mobile pro-
cesses with just one interface, the techniques described in this
paper does not require any rewriting of the compiled Java
bytecode. An integral part of the technique in [1] required the
compiled bytecode to be changed to add explicit jumps to the
resumption point. The technique described here does not need
any such rewrite. Although no goto instruction is available in
Java, we achieve resumption by using nested switch statements
and collected state information.

Before describing the translation approach, we provide a
brief overview of ProcessJ, mobility and resumability

A. ProcessJ

ProcessJ is a general purpose process-oriented programming
language developed at the University of Nevada Las Vegas.
The process-oriented primitives in ProcessJ are based on
Communicating Sequential Processes, CSP [2], and the π-
Calculus [3].

The syntax of ProcessJ is similar to that of Java. There are
no classes or objects, but the expression syntax and control
flow would be familiar to a Java programmer. Though the

1: mobile proc void foo(int x, int y) {
2: int a;
3: B1

4: while (B2) {
5: int q;
6: B3

7: suspend resume with (int z);
8: int w;
9: B4

10: }
11: B5

12: }

Fig. 1. Sample ProcessJ Code.

syntax is similar to Java, the semantics are similar to occam-
π [4]. As a process-oriented language, ProcessJ is composed
of processes that each execute in their own context similar to
processes in occam-π [4].

Figure 1 illustrates a fairly simple ProcessJ mobile process
consisting of 2 interfaces. The original process interface, line
1, takes two integer parameters x and y. The second interface,
a resumption interface, takes one integer parameter z at line
7. Furthermore, a number of local variable declarations (lines
2, 5, and 8) along with 5 code blocks (lines 3, 4, 6, 9, and
11) are included. The first time foo is called (we refer to
that as started), it must be passed two integer values. When
the suspend statement (line 7) is encountered, the process
temporarily suspends, and control is returned to the caller. The
caller can either re-invoke the process or transmit it to another
process across a channel. When foo is invoked for the second
time, it must be with the interface defined by the suspend
resume statement (line 7), namely with just one integer value.

It should be fairly simple to imagine a translation of this
code to Java for all the lines except the suspend resume
statement in line 7. If Java had a goto statement, the im-
plementation could be done using gotos and a some internal
state (that is the end-result of the bytecode rewriting in [1]),
but transforming the code into nested switch statements to
achieve this as well as handling the different interfaces is more
challenging.



B. Mobility

A classification of Mobile Code Languages is provided
in [5]. The term Strong Mobility applies to an agent or process
that is able to suspend their execution and be sent to a separate
computational environment (CE) where it is resumed. The CE
in the case of ProcessJ is either the same Java Virtual Machine,
JVM, or it could mean a separate JVM. The resumed process
is in the same execution state as when it was suspended.

In ProcessJ, we also offer transparent strong mobility [6].
The transparency comes from the ProcessJ programmer not
needing to explicitly provide code to reestablish the state of
the process.

C. Resumability

Pedersen and Kauke provide a definition of resumability
in [1]. To summarize, a process is resumable if it contains a
suspend statement. The suspend statement returns control the
the caller, at some later point on the same or different JVM
the process is resumed at the statement following the suspend.
Since the publication of [1], the addition of polymorphic
resumption interfaces, discussed later in section III, has added
an additional statement suspend with resume that allows the
process to be resumed with different parameters.

We need not bother with the specifics of bytecode defini-
tions of resumability because our approach does not utilize
bytecode rewriting.

It should also be noted, that the techniques described in
this paper are equally well suited to mobile processes that do
not have polymorphic interfaces, that is, implementing single
interface mobile processes in Java can be achieved by using
this approach as well.

II. SERIALIZABLE PROCESSES

A mobile process in ProcessJ is implemented as a Java class.
Each mobile process class implements the Java Serializable
interface. Implementing the Serializable interface allows us to
transfer a process to another computational environment for
resumption.

State is saved and restored by implementing processes as
Serializable Java classes with all local variables rewritten as
fields. Saving variables as fields is an easy and convenient
way of preserving state between resumptions. The rewrite is
accomplished by prefixing local variable names with a block
id that makes them unique at the field level. The compiler is
allowed to rewrite locals as fields because ProcessJ does not
have any fields.

Storing variables as fields instead of locals is the crux that
makes state restoration so simple. Rather than storing local
state each time there is a suspend, state is stored every time a
variable is mutated. There is also no need to restore variable
values during resumption because they are already available.

III. POLYMORPHIC RESUMPTION INTERFACES

ProcessJ supports polymorphic resumption interfaces [7].
That means, a process can be started with an interface A,
execute, suspend, and later resume with a potentially different

1: mobile proc void foo(int x, int y, int z) {
2: int a;
3: B1

4: while (B2) {
5: int q;
6: B3

7: suspend;
8: int w;
9: B4

10: }
11: B5

12: }

Fig. 2. Sample ProcessJ code with a single interface.

interface B. This is useful in combination with resources that
are only available in the current computational environment,
and when the use of ‘dummy’ parameters would otherwise be
necessary.

Polymorphic resumption interfaces allows the compiler to
do static scope checking using interfaces that would otherwise
require unused ‘dummy’ parameters by splitting a single
interface into multiple interfaces. Consider Figure 2. If we
were to use a single interface, but semantically we only use
x, and y in block B1 and only use w in block B4 then we
are expecting the caller to use two separate implicit interfaces
while starting foo. It is their responsibility to know which
variables are actually necessary.

Consider another situation where a process has two inter-
faces: the first is the reading end of a channel and the second
is the reading end of a channel and the writing end of a
channel. To implement this process with a single interface, the
interface would have to be the super-set of the two interfaces:
two channel reading ends and one writing end. There would
be no clear distinction from the single interface when each is
channel end is valid for use. For instance, if the first channel
end is meant only for initialization, and the second and third
are meant to be used as the process is passed around. In this
case, you would first invoke the process with a valid first
channel and with ‘dummy’ channels for the second and third.
After the process suspends, you would then resume the process
with a ‘dummy’ first channel end and valid second and third
ends. What happens when the two are somehow transposed?
In the best case the system becomes deadlocked and in the
worst case the system is still able to communicate but acts in
an unexpected manner. It is exactly this situation we are trying
to avoid.

To implement polymorphic resumption interfaces, we use a
single variadic function called run. A client calls run with the
appropriate parameters for the current interface of the process.
When a process resumes, it checks that the invoked interface
and the current resumption interface are compatible.

In the translated Java code we use exceptions, which do
not exist in ProcessJ, to indicate when an incorrect interface
was used. During run time, the process checks that it is in
the correct state for the current interface. The process throws



public class AbstractCSProcess implements CSProcess, Se-
rializable {

protected int control(int level) {...}
protected <T> T getParameter(int index) {...}
protected boolean isRunning(){...}
protected void resume(Class<?>... parameterTypes){...}
public void run(Object... args) {...}
protected abstract void start();
protected void suspend(int... targets) {...}

}

Fig. 3. Methods in AbstractCSProces

an IncorrectInterfaceException during run time if it is not
in the correct state. This exception is a RuntimeException
so it need not be checked. The benefit of throwing the
IncorrectInterfaceException during run time is it allows a
developer to know the interface expected, the interface sent,
and the caller of the process when a programming error was
made.

IV. CONTROL FLOW REWRITING

The general outline for ProcessJ code with a suspend is
depicted in Figure 1 and the corresponding generated code
is depicted in Figure 4. The example is a simple while
statement that goes over the basic technique used to rewrite
from ProcessJ to Java. Later in the section, we will give
examples of how the process changes slightly with each of
the other control structures.

Starting from the top and working our way down the code in
Figure 4, we will explain each of the rewrites as they appear.
The process is first converted into a Java class that extends
AbstractCSProcess. The AbstractCSProcess is a base class that
maintains state information and helper methods like suspend,
resume, and control for navigating the control structure. The
API is displayed in Figure 3

As mentioned previously, all mobile processes are seri-
alizable. Serializable processes will allow ProcessJ to send
processes in a distributed environment when a distributed run
time is available.

The next rewrite converts local variable definitions into
fields. This removes the necessity of storing local state at sus-
pend time and restoring it during a resume because everything
is stored in fields. To avoid naming conflicts of variables in
different scopes a compiler generated prefix is generated for
each variable. For example, a was defined in block B1 so it
is renamed $b1$a.

At each control structure that uses an expression, a field is
created to store the resulting value. In this case, B2 is stored
in $c1. Since an expression is only expected to be evaluated
once, it cannot be re-evaluated during resumption. To address
this, before the expression would normally be evaluated, the
evaluated value is stored in a field corresponding to that control
point.

The start method represents the body of the process. It
begins by declaring each of the parameter variables. Again,

public class foo extends AbstractCSProcess {
int $b1$a; // original a
int $b3$q; // original q
int $b4$w; // original w
boolean $c1; // original B2

@Override
protected void start() {

// interface 0 (int x, int y)
int $i0$x, $i0$y;
// interface 1 (int z)
int $i1$z;

switch (control(0)) {
case 0:

// interface 0 (int x, int y)
resume(Integer.class, Integer.class);
$i0$x = getParameter(0);
$i0$y = getParameter(1);
B1

case 1:
if (isRunning()) {

$c1 = B2;
}
$1: while ($c1) {

switch (control(1)) {
case 0:

B3

suspend(1,1);
return;

case 1:
//interface 1 (int z)
resume(Integer.class);
$i1$z = getParameter(0);
B4

$c1 = B2;
} // end switch

} // end while
B5

} // end switch
} // end method start

} // end class foo

Fig. 4. General outline for generated Java code.

to avoid naming conflicts the compiler generates prefixes for
each interface. For example, x is in interface 0 so it is renamed
$i0$x. Next is the base switch statement of the body which
splits B1 and the while statement.

Inside case 0, we resume with a list of classes defined in
interface 0. The resume method checks the provided interface
is the same as the expected interface then sets the current state
to RUNNING and resets the resume target. After that, we need
to set the value of each parameter and execute B1.

Java allows fall-through in switch statements. We use fall-
through to split up the blocks without breaking the natural



...
$c1 = B2;
continue $1;
...

Fig. 5. Example of a continue statement.

...
if (B2) {

B3

suspend resume with (int z);
B4

} else {
...

}
...

Fig. 6. Example if statement in ProcessJ.

control flow of the original program. After block B1 executes,
block B2 needs to be evaluated but only if the process is
currently running. If the process was suspended, the expression
was already evaluated and stored in $c1.

Now we have reached the second level of control structure
and B3 is executed. The suspend method is then called with a
control flow map to the next point of resumption. By ‘control
flow map’, we mean a list of integers that describe the case
statements that are selected to bring the process back to the
next resumption point.

The process stores the control flow map and saves its state
as SUSPENDED and returns control to the caller. The caller
now has a reference to an object that can be serialized and
saved, or sent over a channel, or immediately called again
with the next interface.

When the process is resumed, the control method is called.
The control method looks at the control flow map saved by
the last suspend. It then jumps to case 1 and evaluates the
previously stored value $c1 at while. The control method then
looks up the next level of control in the control flow map and
again jumps to case 1.

The resume method checks the interface for the new inter-
face 1 and sets the state to RUNNING. The process then sets
the value of the parameters and executes B4. The expression
B2 is then re-evaluated and stored in $c1 and the process
continues to loop.

In the subsequent subsections we describe special circum-
stances for each of the Java control flow structures. In each of
the examples you can replace the while statement of Figure 4
with the given generated code.

A. break

The break statement poses a small problem. In Java, break
is used to terminate the enclosing for, while, do-while loop
or switch statement. We are using switch statements to jump
through blocks to resume points. If an unlabeled break is used
in a block it would break out of the control flow switch instead
of the original intended structure. We get around this by adding

...
if (isRunning()) {

$c1 = B2;
}
if ($c1) {

switch(control(1)) {
case 0:

B3

suspend(1,1);
return;

case 1:
//interface 1
resume(Integer.class);
$i1$z = getParameter(0);
B4

}
} else {

...
}
...

Fig. 7. Example of if statement with suspend.

a label to each control structure and labeling unlabeled break
statements.

B. continue

The continue statement skips the rest of the current iteration
in a looping construct. Since a continue will skip updating
the stored expression, the looping expression needs to be re-
evaluated before a continue is executed. A continue is then
rewritten as in Figure 5.

C. if else

The if statement needs almost no special treatment from that
described above. An example of an if statement rewrite can be
seen in Figure 7. The expression $c1, is stored as a boolean.
The use of $c1 ensures the expression is only evaluated while
the process is in a RUNNING state.

There is no need to specify a label for the if statement. A
break statement can be used to escape an if but it needs to
specify a label to do so.

D. switch

The switch statement is rewritten similar to an if statement
as seen in 9. The expression can be of type byte, short,
char, and int [8], so the stored expression needs to be of the
evaluated type.

Since switch statements allow fall-through from case to
case, we need to consider the situation where B2 evaluates to
case 0, there is no break statement in case 0 and the control
falls through to case1. In this situation, we need to update the
stored value $c1 at each case. Updating the stored value allows
the process to resume to the last case statement the process
was in.

Unlike the if statement, a switch needs a label. If an
unlabeled break is within the switch statement, the break



would inadvertently escape the generated control flow switch
statement instead of the intended switch.

E. do-while

Figure 11 shows a do-while statement. Like other looping
constructs and switch, do-while requires a label for break
statements. Unlike other control structures, it is not necessary
to store the result of the expression. Because the expression
is evaluated at the end of the loop, it is never evaluated in the
resumption process.

F. while

A while loop, was used in the main example in Figure 4. At
the end of the loop, the expression is re-evaluated and stored.

...
$1:switch (B2) {
case 0:

B3

suspend resume with (int z);
B4

case 1:
...

default:
...

}
...

Fig. 8. Example of switch statement with suspend in ProcessJ.

...
if (isRunning()) {

$c1 = B2;
}
$1:switch($c1) {
case 0:

$c1 = 0;
switch (control(1)) {
case 0:

B3

suspend(1,1);
return;

case 1:
// interface 1
resume(Integer.class);
$i1$z = getParameter(0);
B4

}
case 1:

$c1 = 1;
...

default:
$c1 = 2; // not in other cases
...

}
...

Fig. 9. Example of switch statement with suspend.

...
$1: do {

B3

suspend resume with (int z);
B4

} while(B2);
...

Fig. 10. Example of do-while loop with suspend in ProcessJ.

...
$1: do {

switch(control(1)) {
case 0:

B3

suspend(1,1);
return;

case 1:
//interface 1
resume(Integer.class);
$i1$z = getParameter(0);
B4

}
} while(B2);
...

Fig. 11. Example of do-while loop with suspend.

There is no need to check if the process is currently running
at the end of a while because a suspended process will never
reach this code.

The while statement also requires a label for break state-
ments.

G. for

A for statement is best broken down into a while loop as
seen in Figure 13. Before the loop, the expression and the
initial value are both set only if the process in RUNNING.
There is a label for break statements. At the end of the loop,
the update is executed and the conditional expression is re-
evaluated and stored.

Similar to the while statement, there is no need to check if
the process is running because a suspended process will never
reach this code.

H. Process

When a mobile process contains another mobile process,
each process maintains its own state. For instance, if you
invoke a mobile process B, from within a process A, and B
suspends execution, that will only return control to A. The A
process may decide to resume process B, or it may pass it
down a channel.

It would also be possible for A to suspend and continue
to hold a reference to process B. When A resumes it would
also be possible to resume process B from A without any extra
work other than what has already been explained in this paper.



...
for(init expression; B2; update expression) {

B3

suspend resume with (int z);
B4

} ...

Fig. 12. Example of for loop with suspend in ProcessJ.

...
if (isRunning()) {

init expression;
$c1 = B2;

}
$1: while($c1) {

switch(control(1)) {
case 0:

B3

suspend(1,1);
return;

case 1:
//interface 1
resume(Integer.class);
$i1$z = getParameter(0);
B4

}
update expression;
$c1 = B2;

}
...

Fig. 13. Example of for loop with suspend.

V. RELATED WORK

Mobile processes can be seen as a form of process con-
tinuation [9]. Unlike a traditional continuation, a process
continuation represents the rest of a sub-computation from a
given point in that sub-computation. Each process in ProcessJ
executes in its own execution context. Therefore, a continu-
ation of that process represents the control state of that one
process, not the system as a whole.

An implementation of non-transparent weak mobility is
available in Java through the use of jcsp.mobile [10], [11].
Though this implementation does allow process mobility, the
end programmer needs to save all state and there is no way to
save control state. One benefit to using jcsp.mobile is that it
manages the class loading while communicating across JVMs.

Since ProcessJ already manages the state of the mobile
process, jcsp.mobile may eventually find a place in the dis-
tributed run time. ProcessJ transparent strong mobility and
jcsp.mobile’s ability to manage dynamic class loading would
be a strong combination.

Stefan Fünfrocken describes in [12] how to transparently
migrate the state of a thread in Java. The approach described
uses a preprocessor to instrument the Java code so no bytecode
rewriting was necessary.

The difference between Fünfrocken’s approach and ours is
the need to migrate the entire thread stack. In ProcessJ, we are
only interested in restoring the state of a single process, not
the thread stack. Also, since we are able to convert all locals
variables to fields, we need not save any state other than the
current control state. This makes our approach much simpler
for the implementation of ProcessJ.

Pedersen and Kauke describe in [1] how to provide trans-
parent mobility in the JVM using a combination of code
generation and bytecode rewriting. Since this paper is in large
part an improvement on this work, lets look at how our
implementation differs in greater detail. Our implementation
is accomplished without bytecode rewriting, we use the new
concept of polymorphic resumption interfaces, and there is no
need to save local state before a suspend.

The bytecode rewriting adds an extra step to the flow.
After Java code is produced, it must be compiled, then the
bytecode rewritten before it can execute. In our approach, we
produce Java code that is ready to compile and execute without
modification.

In this approach we allow for polymorphic resumption in-
terfaces where as [1] implements “resumability with parameter
changes”. Polymorphic resumption interfaces are a step above
this because not only are the parameters allowed to change,
but the interfaces changes as well.

One other difference lies in the points just before suspension
and resumption. In [1] all state is stored in an activation record.
The activation record is implemented as an array of objects
on the process. Before a suspend, all the local state is saved
into the activation record, and on resumption all local state is
restored back to the proper local variables. Our implementation
simplifies this drastically by moving all local variables into
fields so there is no need to store values during suspension
and restore during resumption.

VI. CONCLUSION

In this paper, we have shown how the ProcessJ compiler
can provide transparent process mobility using only code gen-
eration. We have also shown how to implement polymorphic
resumption interfaces and describe the rewriting steps required
to provide these features in ProcessJ.

VII. FUTURE WORK

It is still necessary to perform the static scope checking
proposed in [7]. This allows developers to know exactly where
parameters are can be referenced.

All the necessary future work mentioned in [1] is still
relevant. Handling channels inside mobile processes and other
local resources still need to be resolved though the polymor-
phic resumption interfaces should help. Channels and other
local resources in mobile processes could be handled by
only allowing them in parameters and not stored as local
variables. As mentioned previously, it would also be nice
to use jcsp.mobile’s dynamic class loading to load mobile
processes across JVM.



To simplify matters a little, the code demonstrated is not yet
integrated into JCSP. However, with little effort in the base
class it should be possible to execute these processes as a
CSProcess.

REFERENCES

[1] J. B. Pedersen and B. Kauke, “Resumable Java Bytecode - Process
Mobility for the JVM,” in The thirty-second Communicating Process
Architectures Conference, CPA 2009, organised under the auspices of
WoTUG, Eindhoven, The Netherlands, 1-6 November 2009, 2009, pp.
159–172.

[2] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, pp. 666–677, August 1978.

[3] R. Milner, Communicating and mobile systems the pi-calculus. Cam-
bridge[England] ;;New York: Cambridge University Press, 1999.

[4] P. Welch and F. Barnes, “Communicating Mobile Processes: introducing
occam-π,” in 25 Years of CSP, ser. Lecture Notes in Computer Science,
A. Abdallah, C. Jones, and J. Sanders, Eds., vol. 3525. Springer Verlag,
April 2005, pp. 175–210.

[5] G. Cugola, C. Ghezzi, G. Picco, and G. Vigna, “Analyzing mobile code
languages,” in Mobile Object Systems Towards the Programmable Inter-
net, ser. Lecture Notes in Computer Science, J. Vitek and C. Tschudin,
Eds. Springer Berlin / Heidelberg, 1997, vol. 1222, pp. 91–109.

[6] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and P. Ver-
baeten, “Portable support for transparent thread migration in java,” in
Agent Systems, Mobile Agents, and Applications, ser. Lecture Notes in
Computer Science, D. Kotz and F. Mattern, Eds. Springer Berlin /
Heidelberg, 2000, vol. 1882, pp. 377–426.

[7] J. B. Pedersen and M. Sowders, “Static Scoping and Name Resolution
for Mobile Processes with Polymorphic Interfaces,” in The thirty-third
Communicating Process Architectures Conference, CPA 2011, organised
under the auspices of WoTUG, Limerick, Ireland, June 19-22 2011, 2011,
pp. 71–85.

[8] K. Arnold, J. Gosling, and D. Holmes, Java(TM) Programming Lan-
guage, The (4th Edition). Addison-Wesley Professional, 2005.

[9] R. Hieb and R. K. Dybvig, “Continuations and concurrency,” in
Proceedings of the second ACM SIGPLAN symposium on Principles
& practice of parallel programming, ser. PPOPP ’90. New
York, NY, USA: ACM, 1990, pp. 128–136. [Online]. Available:
http://doi.acm.org/10.1145/99163.99178

[10] K. Chalmers and J. M. Kerridge, “jcsp.mobile: A Package Enabling Mo-
bile Processes and Channels,” in Communicating Process Architectures
2005, sep 2005.

[11] K. Chalmers, J. M. Kerridge, and I. Romdhani, “Mobility in JCSP:
New Mobile Channel and Mobile Process Models,” in Communicating
Process Architectures 2007, A. A. McEwan, W. Ifill, and P. H. Welch,
Eds., jul 2007, pp. 163–182.

[12] S. Fünfrocken, “Transparent migration of java-based mobile agents,” in
Mobile Agents, ser. Lecture Notes in Computer Science, K. Rothermel
and F. Hohl, Eds. Springer Berlin / Heidelberg, 1998, vol. 1477, pp.
26–37.


